题目描述:
给定一个二进制字符串,返回它们的和(用二进制表示),已知字符串非空且只包含1和0。
思路和算法:
可以模拟十进制中的加法,只不过在十进制中式锋十进一,二进制中需要逢二进一。
具体的,我们可以取n = max{|a|,|b|},循环n次,从最低为开始遍历。我们使用一个变量carry表示上一个位置的进位,初始值位0。记当前位置对齐的两个位位ai 和 bi,则每一位的答案为(carry + ai + bi)mod 2,下一位的进位为(carry+ai+bi_/2。重复上述步骤,直到数字a和b的每一位计算完毕。最后如果carry的最高位不为0,则将最高位添加到计算结果的末尾。
算法java实现:
public String addBinary(String a, String b) {
StringBuffer ans = new StringBuffer();
int n = Math.max(a.length(),b.length()), carry = 0;
for (int i=0;i<n;++i){
carry += i<a.length() ? (a.charAt(a.length()-1 - i)-'0'):0;
carry += i<b.length() ? (b.charAt(b.length()-1 - i)-'0'):0;
//判断是否有进位
carry /= 2;
}
//最后一位有进位
if (carry > 0) {
ans.append('1');
}
//顺序反转
ans.reverse();
//转换为字符串输出
return ans.toString();
}
代码讲解:
carry += i<a.length() ? (a.charAt(a.length()-1 - i)-'0'):0;
- 三目运算符
result = <expression> ? <statement1> : <statement3>;
其中expression是一个布尔表达式,当expression为真时,执行statement1,否则执行statement3。
- int与char的转换
(a.charAt(a.length()-1 - i)-'0')
复杂度分析:
假设n = max{|a|,|b|}
- 时间复杂度为:O(n),这里的时间复杂度来源于顺序遍历a和b。
- 空间复杂度为:O(1),出去答案所占用的空间,这里使用了常数个临时变量。