简介
KMP算法是一种用来进行字符串匹配的算法。KMP算法的核心是利用next数组,尽量减少字符串匹配失败后重新匹配的次数,从而达到快速匹配的目的。KMP的时间复杂的为O(n+m)。
我们来举一个例子:
假设有两个字符串s1和s2,求s2是否为s1的子串。
暴力做法是将两个字符串逐一比对,如果有一个地方不同则重新进行匹配。
//暴力法
char s1[N],s2[N]; //N为常数
int main()
{
int n,m;
cin>>n>>s2>>m>>s1;
int i,j;
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
if(s1[i]!=s2[j]) break;
}
if(j==n) {puts("YES"); return 0;}
}
puts("NO");
return 0;
}
这样逐一进行比较效率很低,当数据很大的时候,很浪费时间。
怎么改进呢?
假设s1,s2个字符串比较到了第i,j位,是匹配的,而第i+1,j+1位是不匹配的,那么正常我们要重新开始匹配,但可不可以只让s2退后一部分,而不是直接再从头匹配呢,这就是KMP与暴力做法的不同之处,KMP算法的关键就是用next数组来储存当匹配失败时后退到字符串某一处,使得两字符串可以在该位置继续匹配。从而可以尽可能大的减少字符串后退的距离,进而提高效率。
下面来详细的介绍一下next数组:
next[i]=j的含义是该字符串中1一j和i-j+1一i两个区间是完全相等的
,所以如果当匹配到第i位时相等,而匹配到了第i+1位时不相等了,则第i位可以退回到第j位再继续匹配让第j+1位与另一个字符串的i+1位进行匹配,看看能否继续匹配。
如果匹配成功,则继续匹配下一位。如果匹配失败,则可以通过next数组继续往后退,直到推到第一位为止。
下面我们通过一道例题来看一下KMP算法的应用:
题目描述
给定一个模式串S,以及一个模板串P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模板串P在模式串S中多次作为子串出现。
求出模板串P在模式串S中所有出现的位置的起始下标。
输入格式
第一行输入整数N,表示字符串P的长度。
第二行输入字符串P。
第三行输入整数M,表示字符串S的长度。
第四行输入字符串S。
输出格式
共一行,输出所有出现位置的起始下标(下标从0开始计数),整数之间用空格隔开。
输入样例:
3
aba
5
ababa
输出样例:
0 2
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <iomanip>
#define LL long long
using namespace std;
const int N=1e5+5;
char p[N],s[N];
int n,m;
int ne[N];
int main()
{
cin>>n>>p+1>>m>>s+1; //输入数据
//求next数组的过程
for(int i=2,j=0;i<=n;i++)
{//当p的第i位与p的第j+1位不相等时,j后退
while(j&&p[i]!=p[j+1]) j=ne[j];
if(p[i]==p[j+1]) j++; //相等时j进位到j+1位
ne[i]=j; //用next储存
}
//kmp的匹配过程
for(int i=1,j=0;i<=m;i++)
{
while(j&&s[i]!=p[j+1]) j=ne[j]; //当s的第i位与p的第j+1位不匹配时
if(s[i]==p[j+1]) j++; //利用next数组后退
if(j==n) //匹配则继续匹配下一位
{//j等于n时,说明匹配匹配成功,输出
cout<<i-n<<" ";
j=ne[j]; //继续匹配下一个
}
}
return 0;
}