怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
输入格式
输入数据第一行是一个整数K,代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N,代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h,按照建筑的排列顺序给出。
输出格式
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
数据范围
1 ≤ K ≤ 100,
1 ≤ N ≤ 100,
0 < h < 10000
输入样例
3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10
输出样例
6
6
9
题目分析:
这是一道求最长上升子序列的变型题目。
因为他既可以往左飞,也可以往右飞,因此我们可以从左往右求一边最长上升子序列,再从右往左求一边最长上升子序列,再求出这两种方法的最大值即可。
这里偷个懒,最长上升子序列的求法可以看这->最长上升子序列
ac代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <iomanip>
#define LL long long
using namespace std;
const int N=105;
int main()
{
int t;
cin>>t;
while(t--)
{
int n,a[N],b[N]={0},c[N]={0}; //b存储从左往右的最长上升子序列
cin>>n; //c存储从右往左的最长上升子序列
for(int i=1;i<=n;i++)
{
cin>>a[i];
b[i]=c[i]=1;
}
for(int i=1;i<=n;i++) //从左往右求最长上升子序列
for(int j=i+1;j<=n;j++)
{
if(a[j]>a[i])
b[j]=max(b[j],b[i]+1);
}
for(int i=n;i>=1;i--) //从右往左求最长上升子序列
for(int j=1;j<i;j++)
{
if(a[j]>a[i])
c[j]=max(c[j],c[i]+1);
}
int ans=0;
for(int i=1;i<=n;i++) //寻找最大值并输出
ans=max(ans,max(b[i],c[i]));
cout<<ans<<endl;
}
return 0;
}