排队布局(差分约束)

题目描述

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。
农夫约翰有 N 头奶牛,编号从 1 到 N,沿一条直线站着等候喂食。
奶牛排在队伍中的顺序和它们的编号是相同的。
因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。
如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。
一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数 L.
另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数 D。
给出 ML 条关于两头奶牛间有好感的描述,再给出 MD 条关于两头奶牛间存有反感的描述。
你的工作是:如果不存在满足要求的方案,输出-1;如果 1 号奶牛和 N 号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1 号奶牛和 N 号奶牛间可能的最大距离。

输入格式

第一行包含三个整数 N,ML,MD。
接下来 ML 行,每行包含三个正整数 A,B,L,表示奶牛 A 和奶牛 B 至多相隔 L 的距离。
再接下来 MD 行,每行包含三个正整数 A,B,D,表示奶牛 A 和奶牛 B 至少相隔 D 的距离。

输出格式

输出一个整数,如果不存在满足要求的方案,输出-1;如果 1 号奶牛和 N 号奶牛间的距离可以任意大,输出-2;否则,输出在满足所有要求的情况下,1 号奶牛和 N 号奶牛间可能的最大距离。

数据范围

2≤N≤1000,
1≤ML,MD≤104,
1≤L,D≤106

输入样例
4 2 1
1 3 10
2 4 20
2 3 3
输出样例
27

题目分析

对于差分约束的题目,我们第一步还是找出题目中的不等式关系。
x[i]表示第i头牛的位置
不等式关系:
1.x[i+1]>=x[i] //这n头牛是按编号顺序站的,且同一位置上可以站多头牛
2.奶牛a和b之间至多相隔距离L => x[b]-x[a]<=L -> x[b]<=x[a]+L
3.奶牛a和b之间至少相隔距离D => x[b]-x[a]>=D -> x[b]-D>=x[a]

然后就可以根据找出的不等式关系进行建图了。首先是将不等式关系对应成边:边(u,v,w) 表示u+w>=v

题目要求的是最大值,因此我们要求图的最短路。
然后我们再来考虑第一问:是否存在合法方案?对于这个问题,我们只需要跑一边spfa,找一下是否存在负环即可,如果存在负环,则说明题目无解(注:求负环时,我们需要一个虚拟源点,与其它所有的点相连)

第二问是:求1号牛和n号牛的最小距离是多少?即求x[n]-x[1]。因此我们可以设x[1]=0,用spfa求出1号点和其它点的最短路,这样求出的dist[n]即为答案。如果dist[n]>=INF,则说明1到n之间不存在约束关系,距离可以无限远,输出-2。

代码如下
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <algorithm>
#define LL long long
#define ULL unsigned long long
#define PII pair<int,int>
#define x first
#define y second
using namespace std;
int n;
const int N=1e3+5,M=3e4+5,INF=0x3f3f3f3f;
int h[N],e[M],w[M],ne[M],idx;
int dist[N],cnt[N];
bool st[N];
void add(int a,int b,int c)
{
    e[idx]=b;
    w[idx]=c;
    ne[idx]=h[a];
    h[a]=idx++;
}
bool spfa(int size)			//我们可以假设一个超级源点v0,size表示v0与多少点相连
{	//size=n时,v0与所有点相连,可以用来判断负环;size=1时,v0只与1相连,相当于起点只有1号点,可以求1号点与其它点的最短路
    memset(st,0,sizeof st);
    memset(cnt,0,sizeof cnt);
    memset(dist,0x3f,sizeof dist);
    queue<int> q;
    for(int i=1;i<=size;i++)
    {
        dist[i]=0;
        q.push(i);
        st[i]=true;
    }
    while(q.size())
    {
        int u=q.front();
        q.pop();
        st[u]=false;
        for(int i=h[u];~i;i=ne[i])
        {
            int v=e[i];
            if(dist[v]>dist[u]+w[i])
            {
                dist[v]=dist[u]+w[i];
                cnt[v]=cnt[u]+1;
                if(cnt[v]>=n) return false;
                if(!st[v])
                {
                    q.push(v);
                    st[v]=true;
                }
            }
        }
    }
    return true;
}
int main()
{
    memset(h,-1,sizeof h);
    int m1,m2;
    scanf("%d %d %d",&n,&m1,&m2);
    for(int i=1;i<n;i++) add(i+1,i,0);		//将1号关系的条件转化为边
    while(m1--)								//将2号关系的条件转化为边
    {
        int u,v,w;
        scanf("%d %d %d",&u,&v,&w);
        if(u>v) swap(u,v);		//上面的条件中,是保证a<b的,而题目未说明给出点对的大小关系,因此要特判
        add(u,v,w);
    }
    while(m2--)								//将3号关系的条件转化为边
    {
        int u,v,w;
        scanf("%d %d %d",&u,&v,&w);
        if(u>v) swap(u,v);		//同上
        add(v,u,-w);
    }
    if(spfa(n))								//判断是否存在负环
    {
        spfa(1);							//求出1号点到其它点的最短路
        if(dist[n]>=INF) puts("-2");
        else printf("%d\n",dist[n]);
    }
    else puts("-1");
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lwz_159

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值