题目描述
求方程ax^2 +bx+c=0的根,用3个函数分别求当b^2-4ac>0、=0和<0的情况下方程的根,从主函数输入a、b、c的值并输出结果。
输入格式为:a,b,c(回车)
输出格式:
1.两个相同的实数根:x1=x2=(实根1)(回车)
2.两个不相同的实数根:x1=(实根1),x2=(实根2)(回车)
3.两个共轭复数根:x1=(实部1)+(虚部1)i,x2=(实部2)-(虚部2)i(回车)
4.a和b为0:错误!a与b不能同时为0!
5.a为0:x=(根)(回车)
其中,只输出上面冒号后的部分,每个根的数字部分保留4位小数。
题目分析
计算二元一次方程首先计算判别式(b^2-4ac),当判别式大于0时,二元一次方程有两个不等实根,可由求根公式直接求得;当判别式等于0时,两根相等由(-b/2a)求得;当判别式小于0时,根据i*i=-1(虚数)再用求根公式计算出共轭复数根。
还要考虑特殊情况:当a=0,b!=0时,该方程为一元一次方程;当a=0,b=0时,该方程不存在。
代码实现
#include<stdio.h>
#include<math.h>
void over_zero(int x);
//这里计算判别式大于0的情况
void equal_zore(int x);
//这里计算判别式等于0的情况
void under_zore(int x);
//这里计算判别式小于0的情况
int a,b,c;
//a,b,c定义为全局变量,使用自定义函数时不用传入a,b,c的值了
int main()
{
scanf("%d,%d,%d",&a,&b,&c);
int x=b*b-4*a*c;//计算判别式
if(a==0&&b==0)//当a=0,b=0时,该方程不存在
printf("错误!a与b不能同时为0!");
else if(a==0)//当a=0,b!=0时,该方程为一元一次方程
printf("x=%.4f\n",-1.0*c/b);
else if(x>0)//这里计算判别式大于0的情况
over_zero(x);
else if(x==0)//这里计算判别式等于0的情况
equal_zore(x);
else if(x<0)//这里计算判别式小于0的情况
under_zore(x);
return 0;
}
void over_zero(int x)//这里计算判别式大于0的情况
{
//求根公式计算不同根
double x1=-b*1.0/2*a+pow(x,0.5)/2*a;
double x2=-b*1.0/2*a-pow(x,0.5)/2*a;
printf("x1=%.4f,x2=%.4f\n",x1,x2);
}
void equal_zore(int x)//这里计算判别式等于0的情况
{
double x1=-b*1.0/2*a;
printf("x1=x2=%.4f\n",x1);
}
void under_zore(int x)//这里计算判别式小于0的情况
{
double m=-1.0*b/2*a;//实部计算
double n=pow(-x,0.5)/2*a;//虚部计算
printf("x1=%.4f+%.4f i,x2=%.4f-%.4f i\n",m,n,m,n);
}