变量、函数进阶

变量、函数进阶

十三、变量、函数进阶
13.1变量的作用域
局部变量:函数内部定义
生命周期:第一次执行(第一次函数调用)出生函数执行完成
全局变量:在函数外定义
在函数内容使用全局变量:global
在这里插入图片描述

13.2引用问题
基本类型:直接把数值传递给函数,,直接给了100块钱RMB
数值、字符串、浮点、布尔类型
引用类型:传递的是内存空间地址,,给了一张银行卡,里面有100块钱
列表、字典
在这里插入图片描述

十四、异常
14.1什么是异常
程序没有像预期一样的执行
计划:今天早睡,明天早起,去食堂吃个美好的早餐;但是第二天食堂不营
业,异常:计划被打乱了,没法好好运行了
14.2语法
n=input(“请输入一个数字:”)
try:
n=int(n)##如果n不是数值,不能跳转
m=100/n#分母不能为0
print(m)
exceptValueError:
print(“ValueError值错误”)
exceptZeroDivisionError:
print(“ZeroDivisionError分母为0”)
exceptExceptionasresut:
print(“未知错误:%s”%resut)
56
else:
print(“尝试成功执行这里,OK”)
finally:#最后、绝
print(“不管异常是否发生,这里一定运行”)

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值