普通素数 筛法求素数 二次筛法求素数 MillerRabin素数测试【模板】

素数和合数共同的性质:

1.a > 1是合数,当且仅当a = b * c,其中1 < b < a,1 < c < a。

2.合数必有素数因子。

3.如果d > 1,p是素数,且d | q,则d = p。

4.设p是素数且p | a*b,则必有p | a或者p | b。

素数的性质:

1.存在无穷多个素数。

2.每个大于1的正整数都有一个素因子。

素数的分布:

素数定理:用π(x)估计小于正整数x的素数有多少个。随着x的增长,π(x) / (x/ln x) = 1。

推论:令pn是第n个素数,其中n是正整数,那么pn ~ n*ln n。

素数的猜想:

1.波特兰猜想:对于任意给定的正整数n,其中n > 1,存在一个素数p,使得n < p < 2*n。

2.孪生素数猜想:存在无穷多的形如p和p+2的素数对。

3.哥德巴赫猜想:每个大于2的正偶数可以写成两个素数的和。可推出任一大于7的奇数都可

写成三个质数之和的猜想。

普通素数判断

int IsPrime(int N)      //注意#include<cmath>
{
    if(N <= 1)  return 0;
    int i;
    for(i = 2; i <= sqrt(N*1.0); ++i)
        if(N%i == 0)
            return 0;
    return 1;
}

筛法求素数[1,N]

const int MAXN = 1000000;
bool Prime[MAXN+100];   //Prime[i] == true表示i为素数
void IsPrime()
{
    for(int i = 2; i <= MAXN; ++i)
        Prime[i] = true;

    for(int i = 2; i <= MAXN; ++i)
        if(Prime[i])
            for(int j = i+i; j <= MAXN; j+=i)
                Prime[j] = false;
}

二次筛法求素数[L,R]

bool Prime[50010];      //存50000内素数判断结果
int Primer[1000010];    //存放区间[L,R]之间的素数
bool Prime1[1000010];   //判断区间[L,R]中的数是否为素数
int IsPrime()//第一次筛50000内的素数
{
    int num = 0;
    for(int i = 2; i <= 50000; i++)
        Prime[i] = true;
    for(int i = 2; i <= 50000; i++)
    {
        if(Prime[i])
        {
            Primer[num++] = i;
            for(int j = i+i; j <= 50000; j+=i)
                Prime[j] = false;
        }
    }
    return num;     //num为50000范围内的素数个数
}

int IsPrime2(__int64 a,__int64 b)
/*
在第一次筛素数的基础上,利用50000以内的素数,筛去范围【a,b】之间的素数倍数,
剩下则为素数
*/
{
    int num = IsPrime();
    memset(Prime1,true,sizeof(Prime1));
    //Prime1数组用来存放范围【a,b】的素性判断
    if(a == 1)  //这里注意1不是素数
        Prime1[0] = 0; //这里表示0+1不为素数

    for(__int64 i = 0; i < num && Primer[i] * Primer[i] <= b; i++)
    {
        __int64 begin = a/Primer[i] + (a%Primer[i] != 0);
        //上边的a/Primer算出应a为素数Primer[i]的多少倍
        //(a%Primer[i]!=0)表示应从Primer[i]的a/Primer[i]倍开始筛,还是a/Primer[i]+1倍筛
        if(begin == 1)//若得出结果为所被筛素数的1倍,则从该素数的2倍开始筛
            begin++;
        for(begin = begin*Primer[i]; begin <= b; begin += Primer[i])
            Prime1[begin - a] = false;
    }
    //这里重新利用Primer数组,用来存放区间【a,b】间的素数,num为素数个数
    memset(Primer,0,sizeof(Primer));
    num = 0;
    for(__int64 i = a; i <= b; i++)
        if(Prime1[i-a]==1)
            Primer[num++] = i-a;
    return num;     //num为区间[a,b]的素数个数
}

Miller素数测试方法

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#define MAX_VAL (pow(2.0,60))
#define LL __int64
/*LL mod_mul(LL x,LL y,LL mo)   //计算x * y % mo
{
    LL t;
    x %= mo;
    for(t = 0; y; x = (x<<1)%mo,y>>=1)
        if(y & 1)
            t = (t+x) %mo;

    return t;
}*/
LL mod_mul(LL x,LL y,LL mo)     //计算x * y % mo
{
    LL t,T,a,b,c,d,e,f,g,h,v,ans;
    T = (LL)(sqrt(double(mo)+0.5));
    t = T*T - mo;
    a = x / T;
    b = x % T;
    c = y / T;
    d = y % T;
    e = a*c / T;
    f = a*c % T;
    v = ((a*d+b*c)%mo + e*t) % mo;
    g = v / T;
    h = v % T;
    ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo;
    while(ans < 0)
        ans += mo;
    return ans;
}
LL mod_exp(LL num,LL t,LL mo)   //计算num^t % mo
{
    LL ret = 1, temp = num % mo;
    for(; t; t >>=1,temp=mod_mul(temp,temp,mo))
        if(t & 1)
            ret = mod_mul(ret,temp,mo);

    return ret;
}
bool miller_rabbin(LL n)    //miller_rabbin素性测试
{
    if(n == 2)  return true;
    if(n < 2 || !(n&1))     return false;
    int t = 0;
    LL a,x,y,u = n-1;
    while((u & 1) == 0)
    {
        t++;
        u >>= 1;
    }
    for(int i = 0; i < 50; i++)
    {
        a = rand() % (n-1)+1;
        x = mod_exp(a,u,n);
        for(int j = 0; j < t; j++)
        {
            y = mod_mul(x,x,n);
            if(y == 1 && x != 1 && x != n-1)    return false;
            x = y;
        }
        if(x != 1)  return false;
    }
    return true;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值