- 博客(2)
- 收藏
- 关注
原创 准确率、召回率、F1值、ROC、AUC的比较
基础概念及计算:F值是P和 R的调和平均:1/F1=1/2*(1/P+1/R) => F1 = (2*P*R)/(P+R);加权调和平均:F(β)=[(1+β^2)*P*R] / [(β^2*P)+R] β=1,退化为F1,β>1,R更重要;β<1,P更重要;ROC曲线与AUC:ROC:横坐标:FPR(假正率) 纵坐标:TPR(真正率),这两个都是值分...
2018-02-27 08:55:05 1969
原创 样本不平衡问题
样本类别相差很大,比如,正样本998个,负样本2个,训练得到的模型将永远将新样本预测为正样本,这样的模型毫无价值。一般解决样本不平衡问题从三个方向出发:第一:上采样【也叫过采样】,增加补充少的类别样本,比如这里增多负样本,使得正负样本的比例差不多。需注意的是上采样不能简单的对初始样本重复采样,否则容易导致过拟合。可以对已有的正样本利用类似于插值法加入一些噪声干扰。第二:下采样【也叫欠采样】,减少删...
2018-02-26 23:00:23 1317
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人