整数划分(各种类型)nyist 571

1.将n划分成不大于m的划分法:

  1).若是划分多个整数可以存在相同的:

   dp[n][m]= dp[n][m-1]+ dp[n-m][m] dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
  则划分数可以分为两种情况:
  a.划分中每个数都小于 m,相当于每个数不大于 m- 1, 故划分数为 dp[n][m-1].
   b.划分中有一个数为 m. 那就在 n中减去 m ,剩下的就相当于把 n-m 进行划分, 故划分数为 dp[n-m][m];

  2).若是划分多个不同的整数:

  dp[n][m]= dp[n][m-1]+ dp[n-m][m-1] dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
   同样划分情况分为两种情况:
  a.划分中每个数都小于m,相当于每个数不大于 m-1,划分数为 dp[n][m-1].
  b.划分中有一个数为 m.在n中减去m,剩下相当对n-m进行划分,

   并且每一个数不大于m-1,故划分数为 dp[n-m][m-1]

2.将n划分成k个数的划分法:

    dp[n][k]= dp[n-k][k]+ dp[n-1][k-1];

  方法可以分为两类:
    第一类: n 份中不包含 1 的分法,为保证每份都 >= 2,可以先拿出 k 个 1 分
  到每一份,然后再把剩下的 n- k 分成 k 份即可,分法有: dp[n-k][k]
     第二类: n 份中至少有一份为 1 的分法,可以先那出一个 1 作为单独的1份,剩
  下的 n- 1 再分成 k- 1 份即可,分法有:dp[n-1][k-1]。

前面是摘抄他人的,写的还不错,就没必要自己写了……下面的划分是我在做nyist  571时自己想的,题目只说了要前几种划分和奇数的划分,没有要求偶数的,我也就没去写了,反正奇数划分和偶数划分是大同小异,相信看了下面奇数的划分,偶数的划分写出来应该不成问题!

3.将n划分成若干个奇数或偶数的和:

f(n,k)表示将n划分成不大于k的奇数之和的种数。

当k=1或者k=2时,可以用来划分的奇数只有1,所以种数也只能是一种。

当k>n的时候,多出的部分根本划分不到,所以种数为:f(n,n)。

当k==n的时候考虑n的奇偶性,若为奇数本身就是一种划分(偶数就不用考虑本身了),然后再加上小于n的奇数的划分就行了。

当k<n的时候,考虑k的奇偶性,再考虑含不含k的情况。

具体看代码中的f3函数。

 

要有自己的思考,不能老是死记别人的东西!!!自己也许能想出更好的解决办法,加油!!!!

 

#include <iostream>
using namespace std;
int f1(int n,int k)
{
	if(n==1||k==1) return 1;
	if(k>n) return f1(n,n);
	if(n==k) return 1+f1(n,k-1);
	return f1(n-k,k)+f1(n,k-1); //含m和不含m 
}
int f2(int n,int k)
{
	if(k==1||n==k) return 1;
	if(k>n) return 0;
	return f2(n-k,k)+f2(n-1,k-1);//含1和不含1
	
}
int f3(int n,int k )//表示不大于k的奇数划分 
{
    if(k==1||k==2) return 1;//只有一种情况:n个1 
    if(n==k)
       if(n%2) return 1+f3(n,k-2);//n为奇数:本身+小于n的奇数划分 
       else return f3(n,k-1); //n为偶数:小于n的奇数划分 
    if(n<k) return f3(n,n);
    if(k%2) return f3(n-k,k)+f3(n,k-2);  //n为奇数:含k的+不含k的奇数划分 
	else return f3(n,k-1); //n为偶数:不含k的奇数划分
}
int f4(int n,int k)
{
	if(k==1&&n==1) return 1;
	if(k==1&&n>1) return 0;
	if(k>n) return f4(n,n);
	if(k==n) return 1+f4(n,k-1);
	return f4(n-k,k-1)+f4(n,k-1);//含k不含k且为不同,所以k-1 
	
}
int main(void)
{
   int n,k;
   while(cin>>n>>k)
   {
   	  cout<<f1(n,n)<<endl;//将n划分成最大数不超过k的划分数。
   	  cout<<f2(n,k)<<endl;//将n划分成k个正整数之和的划分数
	  cout<<f1(n,k)<<endl;//将n划分成最大数不超过k的划分数。
	  cout<<f3(n,n)<<endl;//将n划分成若干个奇正整数之和的划分数。
	  cout<<f4(n,n)<<endl<<endl;//将n划分成若干不同整数之和的划分数。


   }
}


 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值