POJ 1442 Black Box

Black Box
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 10302 Accepted: 4237

Description

Our Black Box represents a  primitive (原始的) database. It can save an  integer (整数)  array (数组) and has a special i  variable (变量). At the initial moment Black Box is empty and i equals 0. This Black Box processes a  sequence (序列) of commands ( transactions (交易)). There are two types of transactions:

ADD (x): put  element (元素) x into Black Box; 
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number  located (处于) at i-th place after Black Box elements sorting by non-  descending (下降)

Let us examine a possible sequence of 11 transactions: 

Example 1

N Transaction i Black Box contents after transaction Answer
(elements are arranged by non-descending)
1 ADD(3) 0 3
2 GET 1 3 3
3 ADD(1) 1 1, 3
4 GET 2 1, 3 3
5 ADD(-4) 2 -4, 1, 3
6 ADD(2) 2 -4, 1, 2, 3
7 ADD(8) 2 -4, 1, 2, 3, 8
8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
9 GET 3 -1000, -4, 1, 2, 3, 8 1
10 GET 4 -1000, -4, 1, 2, 3, 8 2
11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an  efficient (有效率的)  algorithm (算法) which treats a given  sequence (序列) of  transactions (交易). The maximum number of ADD and GET transactions: 30000 of each type. 


Let us describe the sequence of transactions by two  integer (整数)  arrays (数组)


1. A(1), A(2), ..., A(M): a sequence of  elements (基础) which are being included into Black Box. A values are integers not  exceeding (超过) 2 000 000 000 by their absolute (绝对的) value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2). 

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6). 

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality (不平等) p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence. 


Input

Input (投入) contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the  output (输出) Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2
题目有点长,思路是定义两个优先队列,一个升序一个降序,主要是通过维护降序队列解决问题,分当前降序序列长度小于或等于当前需要输出的第k大的数字,若小于先把元素压入升序序列,再把升序序列的栈顶元素拿出来压入降序序列,若是相等则比较一下当前栈顶元素与将要被压入的数字大小,输出时如果降序序列的长度不够k值的话得从升序序列里拿出一个放到降序序列里再输出。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<new>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>

using namespace std;

priority_queue<int,vector<int>,greater<int> > A;
priority_queue<int,vector<int>,less<int> > B;
int a[33333],b[33333];

int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=m;i++) scanf("%d",&b[i]);
    int i=0,top=1,f=1;
    while(top<=m)
    {
        if(i==b[top])
        {
            top++;
            if(B.size()==f) cout<<B.top()<<endl;
            else
            {
                int t=A.top();
                A.pop();
                B.push(t);
                cout<<B.top()<<endl;
            }
            f++;
        }
        else{
                i++;
                if(B.size()<f)
                {
                    A.push(a[i]);
                    int t=A.top();
                    A.pop();
                    B.push(t);
                }
                else if(a[i]<B.top())
                {
                    int t=B.top();
                    B.pop();
                    B.push(a[i]);
                    A.push(t);
                }
                else A.push(a[i]);
        }
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值