本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
这篇文章的核心内容是关于考虑虚拟储能参与的多微网混合博弈运行策略。以下是文章的主要点:
-
研究背景:随着可再生能源并网比例的增加和需求侧负荷的多样化,多微网系统在促进分布式能源消纳方面发挥着关键作用。风电和光伏出力的随机性和波动性给高比例新能源接入的电力系统规划优化带来了新的挑战。
-
研究目标:提出一种考虑虚拟储能(Virtual Energy Storage, VES)的多微网混合博弈模型,以实现多微网系统内源荷储之间的高效协同配合。
-
方法论:
- 构建基于电动汽车集群和空调负荷集群的虚拟储能模型。
- 建立以多微网运营商为领导者,负荷聚合商和储能运营商为跟随者的主从博弈模型。
- 在主从博弈基础上引入多微网间的合作博弈,促进微网间的P2P电能交易。
- 使用基于非线性函数贡献度的纳什议价模型,实现微网间利益的公平分配。
- 采用自适应差分进化算法和交替方向乘子法(ADMM)求解所提出的模型。
-
主要贡献:
- 提出了一种多微网混合博弈模型,有效均衡了各主体的效益,并提升了多微网运营商的效益。
- 使多微网内分布式可再生能源消纳率提升至100%,减少了实体储能的充放电量和向上级电网的购电量,降低了对实体储能和上级电网的依赖。
-
结果:
- 仿真结果表明,所提方法在控制总成本偏差和各类装机偏差方面显著优于其他方法,并且在不同测试系统上保持了较好的一致性,验证了所提方法的有效性。
-
关键词:多微网系统;混合博弈;虚拟储能;纳什议价;P2P电能交易。
文章通过理论分析和算例验证了所提运行策略的有效性,并讨论了虚拟储能在多微网系统中的潜力和经济性。
以下是复现文章中仿真思路的程序框架,使用Python语言,并结合了常用的科学计算库如NumPy和SciPy,以及优化求解器如GUROBI。请注意,这是一个高层次的框架,具体实现细节(如数据读取、模型参数设定等)需要根据文章的具体内容和数据进行填充。
import numpy as np
import gurobipy as gp
from gurobipy import GRB
from scipy.optimize import differential_evolution
# 定义仿真参数
def define_parameters():
# 这里定义仿真所需的参数,如电动汽车数量、电网参数等
num_evs = 500 # 电动汽车数量
num_mg = 3 # 微网数量
# ...其他参数
return num_evs, num_mg
# 读取数据
def load_data(num_evs, num_mg):
# 从文件或数据库中读取电动汽车和电网的相关数据
# 例如:
ev_data = np.loadtxt('ev_data.txt')
grid_data = np.loadtxt('grid_data.txt')
return ev_data, grid_data
# 构建虚拟储能模型
def build_virtual_storage_model(ev_data):
# 根据电动汽车集群、空调负荷集群构建虚拟储能模型
# ...
pass
# 构建主从博弈模型
def build_master_slave_game_model(num_mg, grid_data):
m = gp.Model("MasterSlaveGameModel")
# 定义变量、目标函数和约束条件
# 例如:
# m.setObjective(..., GRB.MAXIMIZE)
# ...
result = m.optimize()
return result
# 构建合作博弈模型
def build_cooperative_game_model(num_mg):
# 基于纳什议价的合作博弈模型
# 使用自适应差分进化算法求解
bounds = [(0, 1)] * num_mg # 示例:每个微网的变量范围
result = differential_evolution(lambda x: objective_function(x, num_mg), bounds)
return result
# 定义目标函数(示例)
def objective_function(x, num_mg):
# 根据微网间交互电量进行收益分配的目标函数
# ...
return -1 # 示例:返回负值,差分进化算法会寻找最小值
# 主程序
def main():
num_evs, num_mg = define_parameters()
ev_data, grid_data = load_data(num_evs, num_mg)
# 构建虚拟储能模型
virtual_storage_result = build_virtual_storage_model(ev_data)
# 构建主从博弈模型
master_slave_game_result = build_master_slave_game_model(num_mg, grid_data)
# 构建合作博弈模型
cooperative_game_result = build_cooperative_game_model(num_mg)
# 输出结果
print("Virtual Storage Result:", virtual_storage_result)
print("Master-Slave Game Result:", master_slave_game_result)
print("Cooperative Game Result:", cooperative_game_result)
if __name__ == "__main__":
main()
文字注释:
-
define_parameters():定义仿真所需的参数,这些参数可能包括电动汽车数量、微网数量等。
-
load_data():从外部数据源(如文件或数据库)中读取电动汽车和电网的相关数据。
-
build_virtual_storage_model():根据电动汽车集群、空调负荷集群构建虚拟储能模型。
-
build_master_slave_game_model():构建以多微网运营商为领导者,负荷聚合商和储能运营商为跟随者的主从博弈模型。
-
build_cooperative_game_model():基于纳什议价的合作博弈模型,使用自适应差分进化算法求解。
-
objective_function():定义合作博弈模型的目标函数,这里使用了一个示例函数,实际应根据文章中的模型和算法进行详细实现。
-
main():主程序流程,包括参数定义、数据读取、模型构建和求解。
请注意,这个程序框架需要根据文章的具体内容和数据进行详细的实现和调整。具体的模型参数、约束条件和目标函数需要根据文章中的数学模型进行设定。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html