文章解读与仿真程序复现思路——EI\CSCD\北大核心《考虑台风强度尾部概率特性的电网负荷灾损评估方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章《考虑台风强度尾部概率特性的电网负荷灾损评估方法》由陈怡冉等人撰写,发表在《电网技术》上,提出了一种评估方法来量化台风对电网负荷损失的影响。以下是文章的核心内容:

  1. 研究背景

    • 极端台风事件频发,对电网安全运行构成挑战。
    • 历史数据稀缺,准确建模台风强度概率及其对电网负荷的影响存在困难。
  2. 研究目的

    • 提出一种考虑台风强度尾部概率特性的电网负荷灾损评估方法。
  3. 方法论

    • 台风强度概率建模:基于机理和数据融合,确定分布类型和参数估计,使用混合分布模型描述台风强度的全风速段概率特性。
    • 故障场景构建:利用台风风场和元件故障率模型模拟台风对电网的影响。
    • 负荷损失评估:通过系统功能曲线或韧性能力表征进行分析。
  4. 关键发现

    • 建模方法:提出了一种基于机理-数据融合的台风强度概率特性建模方法,有效表征台风强度的尾部特性。
    • 评估流程:设计了“概率建模-场景构建-指标分析”的全链条电网负荷损失评估流程。
    • 案例验证:建立了中国沿海地区的台风强度概率模型,并通过测试算例评估了系统的失负荷风险,验证了方法的有效性。
  5. 技术细节

    • 分布类型:低风速段采用威布尔分布,高风速段采用截断幂律分布。
    • 参数估计:使用数据迁移方法进行参数估计,解决小样本地区建模问题。
    • 评估指标:包括系统最大负荷损失量、在险价值(VaR)和条件在险价值(CVaR)。
  6. 结论

    • 所提方法有效,能够评估台风灾害下电网的失负荷风险。
    • 台风强度分布的尾部特性对电网负荷损失评估至关重要。

这篇文章为电网运营商和规划者提供了一种新的工具,用于评估和准备应对台风等极端天气事件对电网可能造成的损害。

以下是复现文章中台风强度概率建模和电网负荷损失评估仿真的大致思路,以及用Python语言实现的示例代码。请注意,这是一个简化的示例,实际应用中需要根据具体情况调整参数和模型。

# 导入必要的库
import numpy as np
import scipy.stats as stats
from scipy.optimize import minimize
import matplotlib.pyplot as plt

# 假设我们已经有了台风强度的历史数据
# 这里我们使用威布尔分布和截断幂律分布来拟合数据
def weibull_pdf(x, shape, loc, scale):
    """
    威布尔分布的概率密度函数
    """
    return (shape / scale) * (x - loc) ** (shape - 1) * np.exp(-((x - loc) / scale) ** shape)

def truncated_power_law_pdf(x, alpha, lambda_, C):
    """
    截断幂律分布的概率密度函数
    """
    return (alpha * C * x ** (-alpha - 1)) * (x > 1) * (x < lambda_)

# 混合分布模型
def mixed_distribution_pdf(x, pi, shape_w, loc_w, scale_w, alpha, lambda_, C):
    """
    混合分布的概率密度函数
    """
    weibull_part = weibull_pdf(x, shape_w, loc_w, scale_w)
    power_law_part = truncated_power_law_pdf(x, alpha, lambda_, C)
    return pi * weibull_part + (1 - pi) * power_law_part

# 参数估计
# 这里使用最小化负对数似然函数的方法来估计参数
def negative_log_likelihood(params, x_data):
    pi, shape_w, loc_w, scale_w, alpha, lambda_, C = params
    return -np.sum(np.log(mixed_distribution_pdf(x_data, pi, shape_w, loc_w, scale_w, alpha, lambda_, C)))

# 历史台风强度数据
historical_data = np.array([...])

# 初始参数猜测
initial_params = [0.5, 2, 0, 10, 3, 50, 100]

# 使用最小化方法估计参数
result = minimize(negative_log_likelihood, initial_params, args=(historical_data), method='L-BFGS-B')

# 获取最优参数
optimal_params = result.x

# 使用最优参数生成台风强度样本
sampled_data = np.random variate(mixed_distribution_pdf, optimal_params, size=1000)

# 仿真电网负荷损失评估
# 这里假设我们有一个电网模型和台风风场模型
def power_grid_loss_assessment(typhoon_intensity):
    """
    根据台风强度评估电网负荷损失
    """
    # 这里应该是电网模型和台风风场模型的具体实现
    # 为了简化,我们假设负荷损失与台风强度成正比
    return typhoon_intensity * 0.1

# 计算电网负荷损失
grid_loss_samples = [power_grid_loss_assessment(intensity) for intensity in sampled_data]

# 统计分析
mean_loss = np.mean(grid_loss_samples)
var_loss = np.var(grid_loss_samples)

# 绘制结果
plt.hist(grid_loss_samples, bins=50, density=True)
plt.title('Distribution of Grid Load Loss')
plt.xlabel('Load Loss')
plt.ylabel('Probability')
plt.show()

# 输出平均负荷损失和方差
print(f"Mean Grid Load Loss: {mean_loss}")
print(f"Variance of Grid Load Loss: {var_loss}")

 本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电网论文源程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值