本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
本文提出了一种基于Inception和注意力机制的双分支日前电价预测方法,旨在降低原始电价序列的非稳定性和强波动性对预测产生的负面影响,并合理选择影响电价波动的综合因素。核心内容包括:
-
数据预处理:使用最大互信息系数(MIC)筛选与电价相关性较高的影响因素,并将原始电价序列通过变分模态分解(VMD)和群分解(SWD)分解为多个子序列,构造多尺度电价分量矩阵。
-
双分支结构:模型包含两个分支,一个分支处理电价分量矩阵,另一个分支处理相关特征变量矩阵。
-
Inception模块:改进的Inception模块用于提取不同尺度的特征,并增强模型的特征提取能力。
-
注意力机制:
- 并行多维注意力(PMDA):用于电价分量矩阵,提取不同维度的重要特征。
- 自注意力机制(SA):用于相关特征变量矩阵,提取重要特征并进行融合。
-
模型输出:将两个分支提取的特征进行融合,通过全连接层输出次日24点的电价预测结果。
-
实验验证:使用北欧电力市场的历史数据进行验证,与传统注意力机制对比,结果表明所提出的PMDA机制能更有效地提取电价序列的重要特征,提高日前电价预测精度。
该方法能够有效地从多维度提取电价及其影响因素的特征,适用于电力市场的日前电价预测,对于电力市场参与者制定市场策略提供了有效的决策支持。
仿真程序复现思路:
# 基于Inception和注意力机制的双分支日前电价预测仿真复现
# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Model
from keras.layers import Input, Dense, LSTM, Concatenate, Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam
# 步骤1: 数据预处理
# 加载数据集
def load_data():
# 假设数据集已经以CSV格式存储,包含电价和相关特征
data = pd.read_csv('electricity_price_data.csv')
return data
# 数据归一化处理
def normalize_data(data):
scaler = MinMaxScaler(feature_range=(-1, 1))
normalized_data = scaler.fit_transform(data)
return normalized_data
# 步骤2: 特征选择
# 使用最大互信息系数(MIC)筛选特征
def select_features(data, target_column):
# 这里假设有一个函数来计算MIC并返回筛选后的特征
selected_features = mic_selection(data, target_column)
return selected_features
# 步骤3: 模态分解
# 对电价序列进行VMD和SWD分解
def modal_decomposition(price_series):
# 这里假设有一个函数来执行VMD和SWD分解
decomposed_series = decompose_series(price_series)
return decomposed_series
# 步骤4: 构建模型
# 构建双分支日前电价预测模型
def build_model(input_shape):
# 输入层
input_branch1 = Input(shape=input_shape[0])
input_branch2 = Input(shape=input_shape[1])
# 分支1: 电价分量矩阵处理
x1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_branch1)
x1 = MaxPooling2D((2, 2), strides=(2, 2))(x1)
x1 = Flatten()(x1)
x1 = Dense(128, activation='relu')(x1)
# 分支2: 相关特征变量矩阵处理
x2 = LSTM(64, return_sequences=True)(input_branch2)
x2 = LSTM(32)(x2)
x2 = Dense(128, activation='relu')(x2)
# 合并两个分支
merged = Concatenate()([x1, x2])
# 并行多维注意力(PMDA)模块
# 这里假设有一个函数来实现PMDA模块
attention_output = pmda_module(merged)
# 输出层
output = Dense(1)(attention_output)
# 构建模型
model = Model(inputs=[input_branch1, input_branch2], outputs=output)
model.compile(optimizer=Adam(lr=0.001), loss='mean_squared_error')
return model
# 步骤5: 训练模型
def train_model(model, branch1_data, branch2_data, epochs, batch_size):
model.fit([branch1_data, branch2_data], epochs=epochs, batch_size=batch_size)
# 步骤6: 预测
def predict(model, branch1_test_data, branch2_test_data):
predictions = model.predict([branch1_test_data, branch2_test_data])
return predictions
# 主函数
def main():
# 加载数据
data = load_data()
# 数据归一化
normalized_data = normalize_data(data)
# 特征选择
selected_features = select_features(normalized_data, 'price')
# 模态分解
decomposed_series = modal_decomposition(selected_features['price_series'])
# 构建模型
model = build_model((decomposed_series.shape[1:], selected_features.shape[1:]))
# 训练模型
train_model(model, decomposed_series, selected_features, epochs=100, batch_size=32)
# 预测
predictions = predict(model, decomposed_series_test, selected_features_test)
# 反归一化预测结果
predicted_prices = scaler.inverse_transform(predictions)
return predicted_prices
if __name__ == "__main__":
predicted_prices = main()
文字注释:
- 步骤1:加载并预处理数据,包括归一化处理。
- 步骤2:使用最大互信息系数(MIC)筛选与电价高度相关的特征。
- 步骤3:对电价序列进行VMD和SWD模态分解。
- 步骤4:构建包含双分支的深度学习模型,每个分支处理不同的输入数据。
- 步骤5:训练模型,使用Adam优化器和均方误差损失函数。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html