泊松分布的学习

目录

        概要

        概率分布函数

        举例

        泊松分布的事件概率

        违反泊松假设的例子

概要

Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson) 在1838年时发表。

它表示在一个固定的时间段或空间中,一定数量的事件发生的概率,这些事件以一个已知的常数平均速率发生,并且独立于与上一个事件的间隔发生时间。还可以用来表示其他有特定间隔的事件数量,如距离、面积或体积。


例如,记录每天收到邮件数量的个人可能会注意到,他们平均每天收到4封信。如果收到任何邮件都并不影响未来邮件的到达时间,也就是说,如果不同来源的邮件彼此独立地到达,那么一个合理的假设是,每天收到的邮件数量服从一个泊松分布。

概率分布函数

泊松分布模型用来模拟一个事件在一段时间或空间内发生的次数。
一个离散的随机变量X被称为具有参数λ > 0的泊松分布,如果对于k = 0, 1, 2, ...,X的概率分布函数是:  

f(k;\lambda ) = Pr(X = k) = \frac{\lambda ^{k}e-\lambda }{k!}

  • k是出现次数(k是出现次数(k=0,1,2...)
  • e是欧拉数(e = 2.71828...)
  • !是阶乘函数。

\lambda = E(X) = Var(X) 

举例

泊松分布模型可以用来模拟事件,比如

  • 一年内撞击地球的直径大于1米的陨石数量
  • 晚上10点到11点到达急诊室的病人人数
  • 在特定时间间隔内撞击探测器的激光光子数

泊松分布的事件概率

一个事件可以在一个间隔内发生0,1,2,... 次,区间内的平均事件数被指定为 λλ 事件速率 Event rate,也称为 速率参数 Rate parameter。以下方程给出了在一个区间内观测事件的概率k:

P(k events in interval) = \frac{\lambda ^{k}e-\lambda }{k!} 

  •  λ是每个间隔的平均事件数
  • e 数值为 2.71828... (欧拉数)自然对数的底
  • k取值 0, 1, 2, ...
  • k! = k × (k − 1) × (k − 2) × ... × 2 × 1 为k的阶乘。

这个方程就是概率质量函数 (PMF)的泊松分布。

违反泊松假设的例子

  • 每分钟抵达学生会的学生人数可能不会遵循一个泊松分布,因为这个比率不是恒定的(上课时间的低比率,课间时的高比率),而且每个学生的到达也不是独立的(学生往往是成群结队来的)。
  • 一次大的强震会增加发生类似震级余震的可能性,那么一个国家每年发生5级地震的次数可能不会服从泊松分布。
  • 至少有一个事件确定发生的情况不是 Poission 分布式的,但也许可以使用零截断泊松分布进行建模。
  • 如果零事件的区间数高于泊松模型预测的区间数分布,则可以使用零膨胀模型来建模。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值