Tensorflow
UpCoderXH
这个作者很懒,什么都没留下…
展开
-
Tensorflow、深度学习填坑记
问题1 背景:VGG16去做一个人脸j检测的算法,使用RCNN,在fine-tuning的时候其实就是一个二分类问题,区分出来background和face问题描述:在fine-tuning的时候总是将所有样本归到负样本,即就是background。解决方案:增大学习率,一开始我还以为是我selective search提取bounding box的时候有问题,但是完全使用VGG16去做SVR原创 2017-08-17 10:18:51 · 450 阅读 · 0 评论 -
TensorBoard使用
TensorBoard原创 2017-07-26 20:31:41 · 656 阅读 · 0 评论 -
Ubuntu16.04 下cuda的安装
cuda:CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。cuDNN:CuDNN是专门针对Deep Learning框架设计的一套GPU计算加速方案,目前支持的DL原创 2017-07-28 20:11:28 · 6074 阅读 · 0 评论 -
Tensorflow 笔记
tf.get_variable 和 tf.Variable的异同:他们都可以用来创建变量通过get_variable我们还可以获取到之前的变量,不过这需要和variable_scope配合使用,如下举例获取到在其他文件中定义的weights参数with tf.variable_scope(name, reuse=True): res_dict[name] = [] res原创 2017-08-17 15:14:23 · 320 阅读 · 0 评论 -
CenterLoss---Tensorflow
本文主要讲解自己对CenterLoss的一些理解,想要看原文的请戳这里 A discriminative feature learning approach for deep face recognitionbackground CenterLoss提出的主要目的是对FaceNet的改进,FaceNet使用的是triple loss,该计算方法需要我们提前计算出三元组,计算量大不说,而且收敛原创 2018-01-16 16:08:57 · 1910 阅读 · 11 评论 -
Tensorflow中的反卷积
实现函数:tf.nn.conv2d_transpose(input_tensor, filter_weights_tensor, output_shape, strides, padding) input_tensor: 代表的是输入的tensor,默认的size是[batch_size, w, h, channel]filter_weight_tensor: 代表卷积运算时filter参...原创 2018-04-09 16:51:32 · 1525 阅读 · 0 评论 -
天池大赛--ICPR Text Detection总结
ICPR2018举办的文本检测比赛,详细链接请戳.任务描述:从一副图像中检测出文本所在的位置.先后尝试了三种做法: 基于Faster RCNN的CTPN方法,代码链接. 直接加载训练好的模型在数据集上测试F1 score只是0.10数量级. 关于CTPN的详情请看我的这篇博文—[论文阅读]—CTPN基于U-Net的EAST, 代码链接. 直接加载训练好的模型在数据集上测试F1 score...原创 2018-05-26 22:07:07 · 5372 阅读 · 1 评论 -
[Tensorflow] 如何对两幅图像做同样的数据增广操作
在深度学习中,我们经常会对数据进行数组增广操作,比如说左右翻转,增加noise等操作。但是,现在我们的输入是一组图像是一个sample,那我们需要对这一组图像进行同样的数据增广操作,也就是说同一个sample之间的随机性是不存在的,不同sample之间的随机性是存在的。实现方法参考下面的代码:img = tf.ones([512, 512, 3], dtype=tf.float32)s...原创 2018-10-24 10:06:43 · 1615 阅读 · 0 评论