袋子里最小数目的球(java)

这是一个关于算法优化的问题,目标是最小化在进行特定次数的操作后,单个袋子内球的最大数量。给定一个整数数组表示每个袋子初始的球数,以及可以进行的操作次数(将一个袋子分成两个含有正整数球的新袋子),通过二分查找策略寻找最小开销。示例代码展示了如何实现这个算法,并给出了两个测试用例的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:
给你一个整数数组 nums ,其中 nums[i] 表示第 i 个袋子里球的数目。同时给你一个整数 maxOperations 。
你可以进行如下操作至多 maxOperations 次:
选择任意一个袋子,并将袋子里的球分到 2 个新的袋子中,每个袋子里都有 正整数 个球。
比方说,一个袋子里有 5 个球,你可以把它们分到两个新袋子里,分别有 1 个和 4 个球,或者分别有 2 个和 3 个球。
你的开销是单个袋子里球数目的 最大值 ,你想要 最小化 开销。
请你返回进行上述操作后的最小开销。

样例如下:
在这里插入图片描述
代码如下:

import java.util.Arrays;

public class MinimumSize {
    //给你一个整数数组 nums ,其中 nums[i] 表示第 i 个袋子里球的数目。同时给你一个整数 maxOperations 。
    //你可以进行如下操作至多 maxOperations 次:
    //选择任意一个袋子,并将袋子里的球分到 2 个新的袋子中,每个袋子里都有 正整数 个球。
    //比方说,一个袋子里有 5 个球,你可以把它们分到两个新袋子里,分别有 1 个和 4 个球,或者分别有 2 个和 3 个球。
    //你的开销是单个袋子里球数目的 最大值 ,你想要 最小化 开销。
    //请你返回进行上述操作后的最小开销。

    public static int minimumSize(int[] nums, int maxOperations) {
        int left = 1;
        int right = Arrays.stream(nums).max().getAsInt();//返回数组的最大值
        int ans = 0;
        while (left<=right){
            int mid = (right+left)/2;
            int loop = 0;
            for (int i:nums) {
                loop += (i-1)/mid;
            }
            if (loop<=maxOperations){
                ans = mid;
                right = mid-1;
            }else {
                left = mid+1;
            }
        }
        return ans;
    }

    public static void main(String[] args) {
        System.out.println(minimumSize(new int[]{9},2));
        System.out.println(minimumSize(new int[]{2,4,8,2},4));

    }
}

结果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lianggege88

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值