KafkaRequestHandlerPool 是真正处理 Kafka 请求的地方。它有以下组件
- KafkaRequestHandler:请求处理线程类。每个请求处理线程实例,负责从 SocketServer 的 RequestChannel 的请求队列中获取请求对象,并进行处理。
- KafkaRequestHandlerPool:请求处理线程池,负责创建、维护、管理和销毁下辖的请求处理线程。
- BrokerTopicMetrics:Broker 端与主题相关的监控指标的管理类。
- BrokerTopicStats(C):定义 Broker 端与主题相关的监控指标的管理操作。
- BrokerTopicStats(O):BrokerTopicStats 的伴生对象类,定义 Broker 端与主题相关的监控指标,比如常见的 MessagesInPerSec 和 MessagesOutPerSec 等。
KafkaRequestHandler
是I/O 线程,负责处理 Processor 线程下发的 Request 对象。KafkaRequestHandlerPool:创建和管理一组 KafkaRequestHandler 线程。它的定义如下
class KafkaRequestHandler(id: Int, // id: I/O线程序号,请求处理线程的序号,类似于 Processor 线程的 ID 序号,仅仅用于标识这是线程池中的第几个线程。
brokerId: Int, // brokerId:所在Broker序号,即broker.id值
val aggregateIdleMeter: Meter,
val totalHandlerThreads: AtomicInteger, // totalHandlerThreads:I/O线程池大小
val requestChannel: RequestChannel, // requestChannel:请求处理通道,Kafka 在构造 KafkaRequestHandler 实例时,
//必须关联 SocketServer 组件中的 RequestChannel 实例,也就是说,要让 I/O 线程能够找到请求被保存的地方。
apis: KafkaApis, // apis:KafkaApis类,用于真正实现请求处理逻辑的类
time: Time) extends Runnable with Logging {
}
KafkaRequestHandler的run方法如下:
def run(): Unit = {
// 只要该线程尚未关闭,循环运行处理逻辑
while (!stopped) {
// We use a single meter for aggregate idle percentage for the thread pool.
// Since meter is calculated as total_recorded_value / time_window and
// time_window is independent of the number of threads, each recorded idle
// time should be discounted by # threads.
val startSelectTime = time.nanoseconds
// 从请求队列中获取下一个待处理的请求
val req = requestChannel.receiveRequest(300)
val endTime = time.nanoseconds
// 统计线程空闲时间
val idleTime = endTime - startSelectTime
// 更新线程空闲百分比指标
aggregateIdleMeter.mark(idleTime / totalHandlerThreads.get)
req match {
// 关闭线程请求,说明该 Broker 发起了关闭操作
case RequestChannel.ShutdownRequest =>
debug(s"Kafka request handler $id on broker $brokerId received shut down command")
// 关闭线程
shutdownComplete.countDown()
return
// 普通请求
case request: RequestChannel.Request =>
try {
request.requestDequeueTimeNanos = endTime
trace(s"Kafka request handler $id on broker $brokerId handling request $request")
// 由KafkaApis.handle方法执行相应处理逻辑
apis.handle(request)
} catch {
// 如果出现严重错误,立即关闭线程
case e: FatalExitError =>
shutdownComplete.countDown()
Exit.exit(e.statusCode)
// 如果是普通异常,记录错误日志
case e: Throwable => error("Exception when handling request", e)
} finally {
// 释放请求对象占用的内存缓冲区资源
request.releaseBuffer()
}
case null => // continue
}
}
shutdownComplete.countDown()
}
KafkaRequestHandlerPool
KafkaRequestHandlerPool 线程池的实现。它是管理 I/O 线程池的,首先看他的定义
class KafkaRequestHandlerPool(val brokerId: Int, // brokerId:所属Broker的序号,即broker.id值
val requestChannel: RequestChannel, // requestChannel:SocketServer组件下的RequestChannel对象,SocketServer 的请求处理通道,它下辖的请求队列为所有 I/O 线程所共享
val apis: KafkaApis, // api:KafkaApis类,实际请求处理逻辑类
time: Time,
numThreads: Int, // numThreads:I/O线程池初始大小。线程池中的初始线程数量。KafkaRequestHandler 线程的数量
// 它是 Broker 端参数 num.io.threads 的值。目前,Kafka 支持动态修改 I/O 线程池的大小,
// 因此,这里的 numThreads 是初始线程数,调整后的 I/O 线程池的实际大小可以和 numThreads 不一致。
requestHandlerAvgIdleMetricName: String,
logAndThreadNamePrefix : String) extends Logging with KafkaMetricsGroup {
// I/O线程池大小
private val threadPoolSize: AtomicInteger = new AtomicInteger(numThreads)
/* a meter to track the average free capacity of the request handlers */
private val aggregateIdleMeter = newMeter(requestHandlerAvgIdleMetricName, "percent", TimeUnit.NANOSECONDS)
this.logIdent = "[" + logAndThreadNamePrefix + " Kafka Request Handler on Broker " + brokerId + "], "
// I/O线程池
val runnables = new mutable.ArrayBuffer[KafkaRequestHandler](numThreads)
}
createHandler 方法
当线程池初始化时,Kafka 使用下面这段代码批量创建线程,并将它们添加到线程池中
def createHandler(id: Int): Unit = synchronized {
// 创建KafkaRequestHandler实例并加入到runnables中
runnables += new KafkaRequestHandler(id, brokerId, aggregateIdleMeter, threadPoolSize, requestChannel, apis, time)
// 启动KafkaRequestHandler线程
KafkaThread.daemon(logAndThreadNamePrefix + "-kafka-request-handler-" + id, runnables(id)).start()
}
resizeThreadPool 方法
resizeThreadPool 这个方法的目的是,把 I/O 线程池的线程数重设为指定的数值。
def resizeThreadPool(newSize: Int): Unit = synchronized {
val currentSize = threadPoolSize.get
info(s"Resizing request handler thread pool size from $currentSize to $newSize")
if (newSize > currentSize) {
// 该方法首先获取当前线程数量。如果目标数量比当前数量大,就利用刚才说到的 createHandler 方法将线程数补齐到目标值 newSize
for (i <- currentSize until newSize) {
createHandler(i)
}
} else if (newSize < currentSize) {
// 否则的话,就将多余的线程从线程池中移除,并停止它们
for (i <- 1 to (currentSize - newSize)) {
runnables.remove(currentSize - i).stop()
}
}
// 最后,把标识线程数量的变量 threadPoolSize 的值调整为目标值 newSize。
threadPoolSize.set(newSize)
}
SocketServer中KafkaRequestHandlerPool 是真正处理 Kafka 请求的地方,它的流程如下。
第 1 步:Clients 或其他 Broker 发送请求给 Acceptor 线程,这个代码参考Acceptor的run方法。
第 2 & 3 步:Processor 线程处理请求,并放入请求队列,参考Process中的processCompletedReceives代码
第 4 步:I/O 线程处理请求:见上面KafkaRequestHandler的run方法代码,KafkaRequestHandler 线程循环地从请求队列中获取 Request 实例,然后交由 KafkaApis 的 handle 方法,执行真正的请求处理逻辑,KafkaApis 在下一篇博客介绍。
第 5 步:KafkaRequestHandler 线程将 Response 放入 Processor 线程的 Response 队列,这一步的工作也是由 KafkaApis 类完成。当然,这最后依然是由 KafkaRequestHandler 线程来完成的。
第 6 步:Processor 线程发送 Response 给 Request 发送方,代码见Processor 线程的 processNewResponses 方法