深度学习
文章平均质量分 88
lianghe77
研二菜鸡的成长之路
展开
-
SE-ResUNet论文解读
《Deep Learning Prediction of Incoming Rainfalls:An Operational Service for the City of Beijing China》论文解读这是一篇通过扩展FCN结构来预测降水的文章。文章提出的服务主要运用于北京区域。它能对未来两小时内的降水进行预测,时间和空间分辨率分别为1km和6分钟。该神经网络模型结合了已知的U-Net,ResNet,Sqeeze-and-Excitation和注意力机制模块。这种方法得到的结果要好于传统方法,且原创 2021-01-14 16:59:06 · 6767 阅读 · 5 评论 -
Python封装模型
在做深度学习项目的时候遇到一个问题,Boss不想把模型的代码的给甲方,让我直接提供模型或是将源码封装好。Tensorflow中好像有对应功能,但是在Pytorch中我知道的官方指定的保存模型只有两种办法:(1)保存模型参数这要求在使用时需要重建一个模型(2)保存模型需要提供类的定义这两种都达不到Boss的要求,查阅了知乎,有人说使用torchscript,尝试了一下,没有成功(可能因为太菜了)。后来尝试着使用pyc文件进行调用模型,可以做到不提供py文件。具体流程如下:(1)将所有__pyca原创 2020-10-11 10:02:28 · 1977 阅读 · 1 评论 -
《SmaAt-UNet Precipitation Nowcasting using a Small Attention-UNet Architecture》论文解读
《SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet Architecture Kevin》论文解读 这是一篇通过卷积神经网络预测降水的文章。一直以来,专家们通过数值天气预报(NWP)的方式预测降水,但这种方法很难利用过去的时刻信息,且需要大量的数学计算和时间需求。因此,作者提出了一种数据驱动的神经网络用于降水预报。过去在深度学习方面,预测降水之前更多用的是RNN模型,如ConvLSTM,TrajGRU等模型,这些模型原创 2020-08-01 11:19:55 · 2774 阅读 · 0 评论 -
__init__()与__getitem__()及__len__()
__init __()用于类的初始化,几乎在任何框架定义类时都避免不了使用它,因为它负责创建类的实例属性并进行赋值等重要操作,尽管在新建对象时并不需要“显式”调用这个函数。(不使用pytorch框架可以忽略:此外,在pytorch中,如果需要自定义Dataset,就需要实现__getitem__()和__len__()方法。自己当初比较疑惑为什么这两个方法不需要“显式调用”?另外,pytorch...转载 2020-03-15 15:51:37 · 1044 阅读 · 0 评论 -
UNet网络结构
UNet是医学图像处理方面著名的图像分割网络,过程是这样的:输入是一幅图,输出是目标的分割结果。继续简化就是,一幅图,编码,或者说降采样,然后解码,也就是升采样,然后输出一个分割结果。根据结果和真实分割的差异,反向传播来训练这个分割网络。其网络结构如下:可以看出,该网络结构主要分为三部分:下采样,上采样以及跳跃连接。首先将该网络分为左右部分来分析,左边是压缩的过程,即Encoder。通过卷积和...原创 2020-03-01 12:35:24 · 26998 阅读 · 0 评论 -
一些常见的CNN模型
最近闲着无聊在家学习一些基本的CNN模型,这里做一个简要的总结,供自己学习使用。一、VGG VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的表现要优于googLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。它的缺点在于,参数量有140M之多,需要更大的存储空间。但是这个模型很有研究价值。VGG有多种网络结...原创 2020-02-24 21:56:33 · 12869 阅读 · 0 评论 -
《DeepRain:ConvLSTM Network For Precipitation Prediction Using Multichannel Radar Data》论文解读
《DeepRain:ConvLSTM Network For Precipitation Prediction Using Multichannel Radar Data》论文解读Abstract 在本文中,作者提出了一种新的数据驱动的深度学习模型——DeepRain。这个模型可以通过三维四通道的数据对雷达数据进行预测,采用的是ConvLSTM。Introduction 在...原创 2020-02-18 20:05:34 · 1161 阅读 · 3 评论 -
《LightNet:A Dual Spatiotemporal Encoder Network Model for Lighting Prediction》论文解读
本文提出了一种名叫LightNet的模型用于对雷电进行预测。通过数值天气预报系统(NWP)计数出参数,对参数进行编码,同时通过对观测图像也进行编码,其目的是校准参数编码并协助预测,对两个编码后的输出进行融合,在进行编码,最后得到需要的结果。实验证明LightNet效果优于传统气象方法和单纯的ConvLSTM。研究目的严重的雷电现象通常会对人类活动产生危害,因此对雷电现象的预测就显得至关重要。现...原创 2019-11-15 11:09:43 · 1161 阅读 · 0 评论 -
《All convolutional neural networks for radar-based precipitation nowcasting》论文解读
这篇文章于2019年1月在Procedia Computer Science上发表。这篇文章的贡献在于选择和采用了合适的数据预处理方法和损失函数,提出了网络模型——Dozhdya.Net。数据在介绍模型之前首先说一下该实验所采用的数据。数据名为RY,其测量范围为900∗900km900*900km900∗900km,它的空间和时间的分辨率分别为1∗1km1*1km1∗1km和5min。数据的时...原创 2019-11-14 19:57:16 · 1003 阅读 · 0 评论 -
《Convolutional LSTM Network A Machine Learning Approach for Precipitation Nowcasting》论文解读
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting 作者在这篇文章中提出用卷积操作替代矩阵的乘法操作——采用ConvLSTM去取代FC-LSTM,这样做的目的是更好的获取空间特征。RNN 在讲解ConvLSTM之前,我们需要知道LSTM实际上就...原创 2019-09-28 15:24:11 · 2191 阅读 · 3 评论