Python可迭代对象,迭代器,生成器的区别

本篇文章简单谈谈可迭代对象,迭代器和生成器之间的关系。



三者简要关系图





可迭代对象与迭代器


刚开始我认为这两者是等同的,但后来发现并不是这样;下面直接抛出结论:

1)可迭代对象包含迭代器。
2)如果一个对象拥有__iter__方法,其是可迭代对象;如果一个对象拥有next方法,其是迭代器。
3)定义可迭代对象,必须实现__iter__方法;定义迭代器,必须实现__iter__和next方法。


你也许会问,结论3与结论2是不是有一点矛盾?既然一个对象拥有了next方法就是迭代器,那为什么迭代器必须同时实现两方法呢?

因为结论1,迭代器也是可迭代对象,因此迭代器必须也实现__iter__方法。

介绍一下上面涉及到的两个方法:

1)__iter__()

该方法返回的是当前对象的迭代器类的实例。因为可迭代对象与迭代器都要实现这个方法,因此有以下两种写法。

写法一:用于可迭代对象类的写法,返回该可迭代对象的迭代器类的实例。

写法二:用于迭代器类的写法,直接返回self(即自己本身),表示自身即是自己的迭代器。

也许有点晕,没关系,下面会给出两写法的例子,我们结合具体例子看。


2)next()

返回迭代的每一步,实现该方法时注意要最后超出边界要抛出StopIteration异常。


下面举个可迭代对象与迭代器的例子:

  1. #!/usr/bin/env python  
  2. # coding=utf-8  
  3.   
  4.   
  5. class MyList(object):            # 定义可迭代对象类  
  6.   
  7.     def __init__(self, num):  
  8.         self.data = num          # 上边界  
  9.   
  10.     def __iter__(self):  
  11.         return MyListIterator(self.data)  # 返回该可迭代对象的迭代器类的实例  
  12.   
  13.   
  14. class MyListIterator(object):    # 定义迭代器类,其是MyList可迭代对象的迭代器类  
  15.   
  16.     def __init__(self, data):  
  17.         self.data = data         # 上边界  
  18.         self.now = 0             # 当前迭代值,初始为0  
  19.   
  20.     def __iter__(self):  
  21.         return self              # 返回该对象的迭代器类的实例;因为自己就是迭代器,所以返回self  
  22.   
  23.     def next(self):              # 迭代器类必须实现的方法  
  24.         while self.now < self.data:  
  25.             self.now += 1  
  26.             return self.now - 1  # 返回当前迭代值  
  27.         raise StopIteration      # 超出上边界,抛出异常  
  28.   
  29.   
  30. my_list = MyList(5)              # 得到一个可迭代对象  
  31. print type(my_list)              # 返回该对象的类型  
  32.   
  33. my_list_iter = iter(my_list)     # 得到该对象的迭代器实例,iter函数在下面会详细解释  
  34. print type(my_list_iter)  
  35.   
  36.   
  37. for i in my_list:                # 迭代  
  38.     print i  
#!/usr/bin/env python




coding=utf-8

class MyList(object): # 定义可迭代对象类

def __init__(self, num):
    self.data = num          # 上边界

def __iter__(self):
    return MyListIterator(self.data)  # 返回该可迭代对象的迭代器类的实例

class MyListIterator(object): # 定义迭代器类,其是MyList可迭代对象的迭代器类

def __init__(self, data):
    self.data = data         # 上边界
    self.now = 0             # 当前迭代值,初始为0

def __iter__(self):
    return self              # 返回该对象的迭代器类的实例;因为自己就是迭代器,所以返回self

def next(self):              # 迭代器类必须实现的方法
    while self.now &lt; self.data:
        self.now += 1
        return self.now - 1  # 返回当前迭代值
    raise StopIteration      # 超出上边界,抛出异常

my_list = MyList(5) # 得到一个可迭代对象
print type(my_list) # 返回该对象的类型

my_list_iter = iter(my_list) # 得到该对象的迭代器实例,iter函数在下面会详细解释
print type(my_list_iter)

for i in my_list: # 迭代
print i

运行结果:



问题:上面的例子中出现了iter函数,这是什么东西?和iter方法有关系吗?
其实该函数与迭代是息息相关的,通过在Python命令行中打印“help(iter)”得知其有以下两种用法。

用法一:iter(callable, sentinel)
不停的调用callable,直至其的返回值等于sentinel。其中的callable可以是函数,方法或实现了call方法的实例。

用法二:iter(collection)
1)用于返回collection对象的迭代器实例,这里的collection我认为表示的是可迭代对象,即该对象必须实现iter方法;事实上iter函数与iter方法联系非常紧密,iter()是直接调用该对象的iter(),并把iter()的返回结果作为自己的返回值,故该用法常被称为“创建迭代器”。
2)iter函数可以显示调用,或当执行“for i in obj:”,Python解释器会在第一次迭代时自动调用iter(obj),之后的迭代会调用迭代器的next方法,for语句会自动处理最后抛出的StopIteration异常。


通过上面的例子,相信对可迭代对象与迭代器有了更具体的认识,那么生成器与它们有什么关系呢?下面简单谈一谈



生成器


生成器是一种特殊的迭代器,生成器自动实现了“迭代器协议”(即__iter__和next方法),不需要再手动实现两方法。

生成器在迭代的过程中可以改变当前迭代值,而修改普通迭代器的当前迭代值往往会发生异常,影响程序的执行。


看一个生成器的例子:

  1. #!/usr/bin/env python  
  2. # coding=utf-8  
  3.   
  4.   
  5. def myList(num):      # 定义生成器  
  6.     now = 0           # 当前迭代值,初始为0  
  7.     while now < num:  
  8.         val = (yield now)                      # 返回当前迭代值,并接受可能的send发送值;yield在下面会解释  
  9.         now = now + 1 if val is None else val  # val为None,迭代值自增1,否则重新设定当前迭代值为val  
  10.   
  11. my_list = myList(5)   # 得到一个生成器对象  
  12.   
  13. print my_list.next()  # 返回当前迭代值  
  14. print my_list.next()  
  15.   
  16. my_list.send(3)       # 重新设定当前的迭代值  
  17. print my_list.next()  
  18.   
  19. print dir(my_list)    # 返回该对象所拥有的方法名,可以看到__iter__与next在其中  
#!/usr/bin/env python




coding=utf-8

def myList(num): # 定义生成器
now = 0 # 当前迭代值,初始为0
while now < num:
val = (yield now) # 返回当前迭代值,并接受可能的send发送值;yield在下面会解释
now = now + 1 if val is None else val # val为None,迭代值自增1,否则重新设定当前迭代值为val

my_list = myList(5) # 得到一个生成器对象

print my_list.next() # 返回当前迭代值
print my_list.next()

my_list.send(3) # 重新设定当前的迭代值
print my_list.next()

print dir(my_list) # 返回该对象所拥有的方法名,可以看到iter与next在其中

运行结果:



具有yield关键字的函数都是生成器,yield可以理解为return,返回后面的值给调用者。不同的是return返回后,函数会释放,而生成器则不会。在直接调用next方法或用for语句进行下一次迭代时,生成器会从yield下一句开始执行,直至遇到下一个yield。



参考资料:

Python核心编程第二版11.10节,13.13.3节

完全理解Python迭代对象、迭代器、生成器

深入讲解Python中的迭代器和生成器

如何更好地理解Python迭代器和生成器


文中如有不恰当的地方,还望包容和指出,感谢


            </div>
展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值