scikit-learn(sklearn) 0.19 中文文档的翻译计划,邀请你的加入 | ApacheCN

sklearn
scikit-learn(sklearn)官方地址: http://scikit-learn.org/
* 简单高效的数据挖掘和数据分析工具
* 可供大家使用,可在各种环境中重复使用
* 建立在 NumPy,SciPy 和 matplotlib 上
* 开放源码,可商业使用 - BSD license

关于我们

我们是 ApacheCN 开源组织,一群有想法,爱装逼,爱斗图,有活力,爱搞事,爱吃辣条的朋友 。。。
关于我们的更多细节请参阅: http://cwiki.apachecn.org/pages/viewpage.action?pageId=2887240
ApacheCN

前言

今天已经是 9 月 29 号了,马上就要国庆了(突然发现 2017 年剩余的时光已经不多了)。
趁着这个特殊的日子,我们也要做一件颇有意义的事情,那就是组织翻译 sklearn 0.19 中文文档
我们组织翻译过一些文档,如下:
* TensorFlow R1.2 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030122
* sklearn 0.18 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030181
* Apache Spark 2.2.0 中文文档: http://spark.apachecn.org/docs/cn/2.2.0/
* Apache Spark 2.0.2 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=2883613
* Apache Storm 1.1.0 中文文档: http://storm.apachecn.org/releases/cn/1.1.0/
* Apache Kudu 1.4.0 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10813594
* Apache Zeppelin 0.7.2 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030467
* Elastic Elasticsearch 5.4 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=4260364
* Elastic Kibana 5.2 中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=8159377>

但是 TensorFlow 和 sklearn 的中文文档都是一个初版的文档,还不够正式,质量还不是很好。
所以趁着我们前段时间,将《机器学习实战》这本书的内容看了一遍后,录制了一期《机器学习教学版》的视频发布到了网上,相对于我们最先录制的《机器学习讨论版》的视频来说,这次算是比较成功的。
我们将该视频上传到了 优酷,bilibili,AcFun,并且在我们的 github: https://github.com/apachecn/MachineLearning 上进行了文档和代码的维护,虽然只是一个初版的,但我们争取做的更好,我们一直在努力 。。。
如果你也有兴趣,可以参与进来,一起学习,一起成长,一起走的更快,走的更远 。。。
视频资料在后面的 相关资料 部分。

sklearn 0.19 中文文档相关链接

有任何更好的建议,问题反馈,更好的想法啥的,麻烦联系下我们,我们的联系方式在文章后面,谢谢。

问题答疑

  1. 为何翻译各种技术的官方文档?
    答: 官方文档用来入门,是非常好的资料,英语好的朋友建议多看官方文档,英语不好的朋友可以参考下我们翻译的文档。
  2. 这些文档太基础了,没有实战性的东西,意义不大。
    答: 其实我很想反问一句,如果连基础性的东西都弄不好,还谈什么实战性的东西呢 ???连路都不会走,还怎么跑呢 。。。???
  3. 我英语不好,感觉自己翻译的不好,怕耽误了别人。
    答: 要挑战自己,英语不好不要紧,这也是一个学习的过程,更何况你不是一个人在战斗,你还有我们。
  4. 翻译工作的如何安排的?
    答: 查看下面的联系方式,加入那个企鹅群或者联系下面的企鹅就好,就会有朋友24小时接待你,我们一直等着志同道合的你 。。。

翻译要求

相对于翻译要求来说,我觉得没什么太大的要求吧,因为什么不会的都可以学嘛,相关的基础资料我们 ApacheCN 都在整理中,我们一直在努力。。。
我们觉得更重要的是,做这么一件事情,对大家或者对自己来说,有木有意义吧,反正我们觉得是非常有意义的一件事情 。。。

翻译时间

开始时间: 如果说人来不得不来一次说走就走的旅行的话,那么我希望不是说走就走,而是现在就走 。。。
结束时间: 由人数的多少决定吧,希望尽快弄好。

前期基础

为了我们能上手 sklearn,所以我们前期花了一点时间,整理了《机器学习实战》这本书里面的内容,并且将该书籍里面的内容录制了《机器学习教学版》这套入门的视频,希望能对大家有所帮助。
可以参考下面的 相关资料 部分。

后期计划

  1. 翻译 sklearn 的时候,我们可以找一个好的方式,比如群语音屏幕分享啥的,大家一起讨论讨论自己翻译的东西,或者说一个感悟啥的。
  2. 这样增加自己的理解的同事,也可以帮助别人,何乐而不为。
    我们还可以将 sklearn 文档中相关的例子给整理好,那么这对于我们这样的新手来说,就更容易入门了。
  3. 我们还可以组织线下聚会活动,大家一起玩下什么的,一起出去浪一下,一起吹个流弊 。。。
  4. sklearn 的基础搞定之后,就得准备开始学习 TensorFlow 了,翻译下 TensorFlow 的文档先,官方文档用来入门是非常好资料 。。。

相关资料

建议: 看《机器学习教学版》就好,《机器学习讨论版》是先前群里组织线下活动的时候录制的,所以时间比较久,大家也会磕瓜子喝饮料吹流弊啥的 。。。

联系方式

  • 企鹅群
    • 机器学习交流群: 629470233
    • 云计算之嫣然伊笑: 214293307
  • 企鹅
    • 小瑶: 190442212
    • 那伊抹微笑: 1042658081

随意联系一个都可以!←_←

只要你主动,我们就会有故事 。。。

关于我们

我们是 ApacheCN 开源组织,一群有想法,爱装逼,爱斗图,有活力,爱搞事,爱吃辣条的朋友 。。。
关于我们的更多细节请参阅: http://cwiki.apachecn.org/pages/viewpage.action?pageId=2887240
ApacheCN
只要你主动,我们就会有故事 。。。

sklearn0.19中文文档 PDF格式高清。 .1. 广义线性模型 1.1.1. 普通最小二乘法 1.1.1.1. 普通最小二乘法复杂度 1.1.2. 岭回归 1.1.2.1. 岭回归的复杂度 1.1.2.2. 设置正则化参数:广义交叉验证 1.1.3. Lasso 1.1.3.1. 设置正则化参数 1.1.3.1.1. 使用交叉验证 1.1.3.1.2. 基于信息标准的模型选择 1.1.3.1.3. 与 SVM 的正则化参数的比较 1.1.4. 多任务 Lasso 1.1.5. 弹性网络 1.1.6. 多任务弹性网络 1.1.7. 最小角回归 1.1.8. LARS Lasso 1.1.8.1. 数学表达式 1.1.9. 正交匹配追踪法(OMP) 1.1.10. 贝叶斯回归 1.1.10.1. 贝叶斯岭回归 1.1.10.2. 主动相关决策理论 - ARD 1.1.11. logistic 回归 1.1.12. 随机梯度下降, SGD 1.1.13. Perceptron(感知器) 1.1.14. Passive Aggressive Algorithms(被动攻击算法) 1.1.15. 稳健回归(Robustness regression): 处理离群点 (outliers)和模型错误 1.1.15.1. 各种使用场景与相关概念 1.1.15.2. RANSAC: 随机抽样一致性算法(RANdom SAmple Consensus) 1.1.15.2.1. 算法细节 1.1.15.3. Theil-Sen 预估器: 广义中值估计 1.1.15.3.1. 算法理论细节 1.1.15.4. Huber 回归 1.1.15.5. 注意 1.1.16. 多项式回归:用基函数展开线性模型 1.2. 线性和二次判别分析 1.2.1. 使用线性判别分析来降维 1.2.2. LDA 和 QDA 分类器的数学公式 1.2.3. LDA 的降维数学公式 1.2.4. Shrinkage(收缩) 1.2.5. 预估算法 1.3. 内核岭回归 1.4. 支持向量机 1.4.1. 分类 1.4.1.1. 多元分类 1.4.1.2. 得分和概率 1.4.1.3. 非均衡问题 1.4.2. 回归 1.4.3. 密度估计, 异常(novelty)检测 1.4.4. 复杂度 1.4.5. 使用诀窍 1.4.6. 核函数 1.4.6.1. 自定义核 1.4.6.1.1. 使用 python 函数作为内核 1.4.6.1.2. 使用 Gram 矩阵 1.4.6.1.3. RBF 内核参数 1.4.7. 数学公式 1.4.7.1. SVC 1.4.7.2. NuSVC 1.4.7.3. SVR 1.4.8. 实现细节 1.5. 随机梯度下降 1.5.1. 分类 1.5.2. 回归 1.5.3. 稀疏数据的随机梯度下降 1.5.4. 复杂度 1.5.5. 实用小贴士 1.5.6. 数学描述 1.5.6.1. SGD 1.5.7. 实现细节 1.6. 最近邻 1.6.1. 无监督最近邻 1.6.1.1. 找到最近邻 1.6.1.2. KDTree 和 BallTree 类 1.6.2. 最近邻分类 1.6.3. 最近邻回归 1.6.4. 最近邻算法 1.6.4.1. 暴力计算 1.6.4.2. K-D 树 1.6.4.3. Ball 树 1.6.4.4. 最近邻算法的选择 1.6.4.5. leaf_size 的影响 1.6.5. 最近质心分类 1.6.5.1. 最近缩小质心 1.7. 高斯过程 1.7.1. 高斯过程回归(GPR) 1.7.2. GPR 示例 1.7.2.1. 具有噪声级的 GPR 估计 1.7.2.2. GPR 和内核岭回归(Kernel Ridge Regression)的比 较 1.7.2.3. Mauna Loa CO2 数据中的 GRR 1.7.3. 高斯过程分类(GPC) 1.7.4. GPC 示例 1.7.4.1. GPC 概率预测 1.7.4.2. GPC 在 XOR 数据集上的举例说明 1.7.4.3. iris 数据集上的高斯过程分类(GPC) 1.7.5. 高斯过程内核 1.7.5.1. 高斯过程内核 API 1.7.5.2. 基础内核 1.7.5.3. 内核操作 1.7.5.4. 径向基函数内核 1.7.5.5. Matérn 内核 1.7.5.6. 有理二次内核 1.7.5.7. 正弦平方内核 1.7.5.8. 点乘内核 1.7.5.9. 参考文献 1.7.6. 传统高斯过程 1.7.6.1. 回归实例介绍 1.7.6.2. 噪声数据拟合 1.7.6.3. 数学形式 1.7.6.3.1. 初始假设 1.7.6.3.2. 最佳线性无偏预测(BLUP) 1.7.6.3.3. 经验最佳线性无偏估计(EBLUP) 1.7.6.4. 关联模型 1.7.6.5. 回归模型 1.7.6.6. 实现细节 1.8. 交叉分解 1.9. 朴素贝叶斯 1.9.1. 高斯朴素贝叶斯 1.9.2. 多项分布朴素贝叶斯 1.9.3. 伯努利朴素贝叶斯 1.9.4. 堆外朴素贝叶斯模型拟合 1.10. 决策树 1.10.1. 分类 1.10.2. 回归 1.10.3. 多值输出问题 1.10.4. 复杂度分析 1.10.5. 实际使用技巧 1.10.6. 决策树算法: ID3, C4.5, C5.0 和 CART 1.10.7. 数学表达 1.10.7.1. 分类标准 1.10.7.2. 回归标准 1.11. 集成方法 1.11.1. Bagging meta-estimator(Bagging 元估计器) 1.11.2. 由随机树组成的森林 1.11.2.1. 随机森林 1.11.2.2. 极限随机树 1.11.2.3. 参数 1.11.2.4. 并行化 1.11.2.5. 特征重要性评估 1.11.2.6. 完全随机树嵌入 1.11.3. AdaBoost 1.11.3.1. 使用方法 1.11.4. Gradient Tree Boosting(梯度树提升) 1.11.4.1. 分类 1.11.4.2. 回归 1.11.4.3. 训练额外的弱学习器 1.11.4.4. 控制树的大小 1.11.4.5. Mathematical formulation(数学公式) 1.11.4.5.1. Loss Functions(损失函数) 1.11.4.6. Regularization(正则化) 1.11.4.6.1. 收缩率 (Shrinkage) 1.11.4.6.2. 子采样 (Subsampling) 1.11.4.7. Interpretation(解释性) 1.11.4.7.1. Feature importance(特征重要性) 1.11.4.7.2. Partial dependence(部分依赖) 1.11.5. Voting Classifier(投票分类器) 1.11.5.1. 多数类标签 (又称为 多数/硬投票) 1.11.5.1.1. 用法 1.11.5.2. 加权平均概率 (软投票) 1.11.5.3. 投票分类器(VotingClassifier)在网格搜索 (GridSearch)应用 1.11.5.3.1. 用法 1.12. 多类和多标签算法 1.12.1. 多标签分类格式 1.12.2. 1对其余 1.12.2.1. 多类学习 1.12.2.2. 多标签学习 1.12.3. 1对1 1.12.3.1. 多类别学习 1.12.4. 误差校正输出代码 1.12.4.1. 多类别学习 1.12.5. 多输出回归 1.12.6. 多输出分类 1.12.7. 链式分类器 1.13. 特征选择 1.13.1. 移除低方差特征 1.13.2. 单变量特征选择 1.13.3. 递归式特征消除 1.13.4. 使用 SelectFromModel 选取特征 1.13.4.1. 基于 L1 的特征选取 1.13.4.2. 基于 Tree(树)的特征选取 1.13.5. 特征选取作为 pipeline(管道)的一部分 1.14. 半监督学习 1.14.1. 标签传播 1.15. 等式回归 1.16. 概率校准 1.17. 神经网络模型(有监督) 1.17.1. 多层感知器 1.17.2. 分类 1.17.3. 回归 1.17.4. 正则化 1.17.5. 算法 1.17.6. 复杂性 1.17.7. 数学公式 1.17.8. 实用技巧 1.17.9. 使用 warm_start 的更多控制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值