weka源代码分析-总述

WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。

Weka是一个开源的软件,阅读并理解其源代码可以帮助我们更好的理解算法的细节,同时也能够扩展其算法以获得更广泛的应用。但是现在公开的资料中对weka源代码分析的内容很少,所以本博客推出weka源代码分析系列,将针对weka中实现各种算法分析器实现细节。

本系列根据weka功能的划分主要分析器分类算法、聚类算法、规则挖掘等,分别介绍其中的各个算法,最后介绍如何对weka进行扩展。

本系列主要分析weka3.7.6版本

本文首先概要列出分类、聚类以及规则挖掘等主要实现的算法以及类结构关系,以便有个大致的了解。

分类:

所有的分类器都继承自抽象类AbstractClassifier而AbstractClassifier继承自接口Classifier。集成关系如下图所示:


而类Classifier中主要包含以下接口:

public abstract voidbuildClassifier(Instances data) throws Exception;

该方法主要用于根据样本数据data训练出分类器;

public double classifyInstance(Instanceinstance) throws Exception;

该方法是对样本instance进行分类并返回最有可能的类;

public double[] distributionForInstance(Instanceinstance) throws Exception;

对样本instance进行分类,如果分类成功则返回的数组值包含该类别,否则数组元素全为0;

 

所有的classifier必须实现classifyInstance或distributionForInstance。

 

聚类:

所有的聚类算法都集成自AbstractClusterer,而AbstractClusterer继承自接口Clusterer,主要调用关系如下:



Clusterer主要实现的接口如下:

voidbuildClusterer(Instances data) throws Exception;

根据样本数据训练聚类算法;

intclusterInstance(Instance instance) throws Exception;

public double[]distributionForInstance(Instance instance) throws Exception;

为实例归类;

intnumberOfClusters() throws Exception;

返回聚类个数;

同样所有的聚类算法都必须实现clusterInstance或distributionForInstance。

 

规则挖掘:

关联规则主要实现的算法有Apriori,Fpgrowth等,

类关系如下:



Associator中主要实现

voidbuildAssociations(Instances data) throws Exception;

该方法主要用于生成规则生成器。

对于以上所列的算法的实现细节以及其他的诸如数据预处理、可视化等的代码后面会一一详细列出。


阅读更多
个人分类: weka源代码分析
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭