- 博客(89)
- 收藏
- 关注
原创 flair.embeddings 对句子进行向量
sentence = Sentence('我 有 一 个 小 毛毛 驴') # 进入这个Sentence的必须进行分词。print (_current_token_embeddings) # 来之不易的成功。# 这个调用方式,我想起来了,我好像是用save 存储过这些东西。input_text = '我有一个小毛驴'# 我做的一切都是正确,很好很欣慰。
2024-01-21 20:54:50 383
翻译 Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting 卷积递归神经网络的小脚印关键词发现
Abstract关键字发现(KWS)构成了人机界面的主要组成部分。 KWS的目标是在低虚警(FA)率下最大化检测精度,同时最小化占用空间,延迟和复杂性。 为了实现它们,我们研究了卷积递归神经网络(CRNN)。 受大规模先进语音识别系统的启发,我们结合了卷积层和递归层的优势,以利用局部结构和远程上下文。 我们分析了架构参数的影响,并提出了提高性能的培训策略。 仅需约230k参数,我们的CRNN模...
2020-02-11 21:43:42 931
翻译 Attention-based End-to-End Models for Small-Footprint Keyword Spotting基于注意的小脚印关键字点对点模型
Abstract在本文中,我们提出了一种基于注意力的端到端神经网络方法,用于小足迹关键词发现(KWS),旨在简化构建生产质量的KWS系统的流程。我们的模型包括一个编码器和一个注意机制。编码器使用RNN将输入信号转换为高级表示。然后,注意力机制对编码器特征进行加权,并生成固定长度的向量。最后,通过线性变换和softmax函数,向量成为用于关键字检测的得分。我们还评估了不同编码器架构(包括LSTM...
2020-02-06 17:01:57 1857 2
翻译 A FAR-FIELD TEXT-DEPENDENT SPEAKER VERIFICATION DATABASE AND THE BASELINES
远距离文本相关的说话人验证数据库和基准Abstract本文介绍了一个名为HI-MIA的大型远场相关文本说话者验证数据库。 我们的目标是满足基于远场麦克风阵列的扬声器验证的数据要求,因为大多数公开可用的数据库都是单个通道近距离对话且与文本无关。 我们的数据库包含针对远场方案设计的房间中340人的记录。 通过位于不同方向和距离扬声器的多个麦克风阵列和一个高保真近距离麦克风来捕获录音。 此外,我...
2020-02-05 10:52:06 905
翻译 Region Proposal Network Based Small-Footprint Keyword Spotting《基于区域提议网络的小足迹关键词发现》
摘要我们将基于锚的区域建议网络(RPN)应用于端到端关键字发现(KWS)。 RPN已被广泛用于图像和视频处理中的目标检测。在这里,它用于联合建模关键字分类和本地化。该方法提出了多个锚点作为话语中关键词的粗略位置,并且针对每个正锚点共同学习了分类和对地面真实区域的变换。此外,我们扩展了关键字/非关键字二进制分类以检测多个关键字。我们在具有两个热门词的热门词检测数据集上验证了我们提出的方法。在每小...
2020-02-02 11:39:48 1023
翻译 Investigating Neural Network based Query-by-Example Keyword Spotting Approach for Personalized Wake-
Investigating Neural Network based Query-by-Example Keyword Spotting Approach for Personalized Wake-up Word Detection in Mandarin Chinese基于神经网络的示例查询关键词识别方法在普通话个性化唤醒词检测中的研究Abstract我们使用示例查询关键字查找(Q...
2020-01-30 15:53:07 648
翻译 An End-to-End Architecture for Keyword Spotting and Voice Activity Detection《端到端框架的语音唤醒词识别检测》
Abstract我们提出了一个单一的神经网络架构来完成两项任务:在线关键词发现和语音活动检测。 我们开发了一种新的推理算法,用于使用Connectionist临时分类损失函数训练的端到端递归神经网络,该模型使我们的模型无需重新训练即可在关键词识别和语音活动检测上实现高精度。 与以前的语音活动检测模型相比,我们的体系结构不需要对齐的训练数据,并且使用与关键字发现模型相同的参数。 这使我们能够部署...
2020-01-29 14:20:33 1356
翻译 Deep Learning for Video Game Playing《DQN 在电子游戏中的应用》
在本文中,我们回顾了深度学习的最新进展,介绍了它们如何应用于玩不同类型的视频游戏,例如第一人称射击游戏,街机游戏和实时策略游戏。 我们分析了不同游戏类型对深度学习系统的独特要求,并强调了将这些机器学习方法应用于视频游戏(例如一般游戏,处理巨大决策空间和稀疏奖励)的情况下的重要开放挑战。I. INTRODUCTION现在,将AI技术应用于游戏已成为一个成熟的研究领域,有多个会议和专...
2020-01-29 12:44:54 3043
翻译 Neural Approaches to Conversational AI Question Answering(问答,任务型对话,闲聊)
摘要本文概述了最近几年开发的对话式AI神经方法。 我们将对话系统分为三类:(1)问答代理,(2)面向任务的对话代理和(3)聊天机器人。 对于每个类别,我们将使用特定的系统和模型作为案例研究,对当前最先进的神经方法进行回顾,画出它们与传统方法之间的联系,并讨论已取得的进展和仍面临的挑战。Chapter 1 Introduction开发一种智能对话系统1,不仅可以模拟人类对话...
2020-01-28 15:55:39 5835
翻译 Few-Shot Generalization Across Dialogue Tasks《少数据交互对话生成》
摘要基于机器学习的对话管理器能够学习复杂的行为以完成任务,但是将其功能扩展到新领域并不容易。 我们研究了不同政策处理不合作用户行为的能力,以及在学习新的任务(例如预订酒店)时如何重新运用完成一项任务(例如餐厅预订)的专业知识。 我们介绍了循环嵌入对话策略(REDP),该策略将系统动作和对话状态嵌入同一向量空间。 REDP包含基于改进的神经图灵机的内存组件和注意力机制,并且在此任务上明显优于基准...
2020-01-26 00:43:55 817
翻译 Sequential Dialogue Context Modeling for Spoken Language Understanding《口语理解的上下文构建》
摘要口语理解(SLU)是面向目标的对话系统的重要组成部分,该系统将用户的发言解析为语义框架表示。传统上,SLU不会利用对话系统之前的对话历史,而上下文的歧义由下游组件来解决。在本文中,我们探索了在基于递归神经网络(RNN)的语言理解系统中建模对话上下文的新颖方法。我们提出了顺序对话编码器网络,该网络允许按时间顺序从对话历史中编码上下文。我们将我们提出的体系结构的性能与两个上下文模型进行比较,一...
2020-01-25 17:52:49 861
原创 中英文字符混合处理
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Fri Apr 12 11:26:30 2019@author: macbook"""def is_zh(c) : x = ord(c) # Punct & Radicals if x >= 0x2e80 and x &l...
2019-04-12 11:39:13 913
原创 为什么是这个不行
#!/usr/bin/env python# encoding: utf-8import numpy as npimport tensorflow as tffrom utils import load_w2v, batch_index, load_inputs_twitter, load_word_id_mappingFLAGS = tf.app.flags.FLAGStf...
2019-02-01 08:49:46 314
原创 rmsprop 是个SGD
rmsprop(lr, tparams, grads, x, mask, y, cost): """ A variant of SGD that scales the step size by running average of the recent step norms.
2016-11-21 13:04:00 1061
原创 sentence是的用法
Python语法支持。result是列表,sentence是列表,sentence[:]是列表切片意思是取其所有项convert返回的是列表,所以可以赋值给两个变量
2016-11-04 10:18:04 4742
原创 Embedding Layer的用处
Embedding Layer 是针对NLP的,将原始One-Hot编码的词(长度为词库大小)映射到低维向量表达,降低特征维数。就是降低维度的用法。在keras 代码中经常使用。
2016-11-01 16:25:25 6693
转载 @property的用法
在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:?12s =Student()s.score =9999这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,
2016-10-28 16:19:45 392
原创 矩阵的逐个相乘
StockCloseSeries(:,end)=1;%The price for CNYStockCloseSeriesBackup=StockCloseSeries;% StockCloseSeries=StockCloseSeriesBackup;%For testingStockShares=StockSharesAcIni(2:end,:);%Eliminate the initi
2016-10-10 15:28:51 1293
原创 两列相乘
CaptAmount=cell2mat(DataAll(:,4)).*cell2mat(DataAll(:,5));%标志着第四列和第五列相乘
2016-10-10 14:57:14 857
原创 matlab目录选择
当前路径下 (mat和m文件在一起): load ***.mat; 在下一级路径下: load .\下一级路径的文件名\***.mat; 在上一级路径下: load ..\***.mat; 在平行文件夹内: load ..\平行的文件夹\***.mat; 例如,读写当前目录下aaaa文件夹中的x.txt文件fid = fopen('.\aaaa
2016-10-10 14:36:56 803
原创 matlab强制字符转换和分隔
DataAllR第三列刷一遍 转换成为字符形式,有问题要改size02= length(DataAllR(:,3));for ih=1:size02 ih=1; str=DataAllR(ih,3); str = strtrim(str{1,1}); [a,b,c]=fileparts(str);
2016-10-10 13:50:49 2622
原创 强制字符转化
size02= length(DataAllR(:,3)); for ih=1:size02ih = size02;str=DataAllR(ih,3);str = strtrim(str{1,1});S = regexp(str, '.S', 'split') %只能分隔.S 用这个%[a,b,c]=fileparts('C:\桌面\121.jpg')DataAllR{ih,3} =
2016-09-29 14:04:09 512
原创 FENGRUN
% function []=StatementProcess(file_name)clearfile_name='景富';file_name01='丰润';tic%% Data import%Pull[DataRaw, TextRaw, Raw]=xlsread(file_name,'流水单');[DataRaw01, TextRaw01, Raw01]=x
2016-09-29 00:38:46 242
原创 除法的用法,在变量后面加个 .
AnnalReturn=0.16; %年化收益AnnalStd=0.045; %年化波动StopLossLine=0.92; %止损线N=10000; %模拟的年数M=242; %年度天数DayStd=AnnalStd./sqrt(M);
2016-09-28 10:19:05 608
原创 ss
SMaxdrawdown(ii,:) = maxdrawdown([NV_fund_all NV_portfolio]);Std(ii,:)=std(tick2ret([NV_fund_all NV_portfolio]))*sqrt(52/13);%月度波动率
2016-09-22 17:52:51 677
原创 矩阵的生成
zeros函数——生成零矩阵ones函数——生成全1阵【zeros的使用方法】B=zeros(n):生成n×n全零阵。B=zeros(m,n):生成m×n全零阵。B=zeros([m n]):生成m×n全零阵。B=zeros(d1,d2,d3……):生成d1×d2×d3×……全零阵或数组。B=zeros([d1 d2 d3……])
2016-09-22 17:49:43 614
原创 日期转化方法 2014/12/31 to 20141231
Date2W=@(x)year(x)*10000+month(x)*100+day(x);dateW_fund=Date2W(datet_fund);
2016-09-21 14:59:03 412
原创 剪切日志对其的数据
NV_index0=data_index(find(strcmp(datet_fund{1},datet_index)):find(strcmp(datet_fund{end},datet_index)),:);
2016-09-21 14:53:20 250
转载 压力测试
%% 读取净值/指数数据,求出收益率数据;IndexNumber=4;%指数个数text=cell(size(Indexsummary));text(:,1)=Indexsummary(:,1);text(1,:)=Indexsummary(1,:);Data=cell2mat(Indexsummary(2:end,2:end));load('情景分析.mat');Net_Index=Dat
2016-09-21 14:14:27 734
原创 文章标题
%本程序求得沪深300在下跌-0.03时候所有的策略和指数的幅度%%清空数据 第二份输出数据clear;clcticformat long%% 数据拉取[data_fund,textdata_fund,raw_fund]=xlsread('入选子基金及组合.xlsx','子基金');[data_all,textdata_all,raw]=xlsread('入选子基金及组合.xlsx'
2016-09-21 11:54:40 245
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人