蜗牛爱上星星

一只贪玩的蜗牛

为什么引入验证集来评估机器学习模型?只用训练集和测试集可以吗?

评估模型的重点是将数据划分为三个集合:训练集、验证集和测试集。在训练数据上训练模型,在验证数据上评估模型。一旦找到了最佳参数,就在测试数据上最后测试一次。你可能会问,为什么不是两个集合:一个训练集和一个测试集?在训练集上训练模型,然后在测试集上评估模型。这样简单得多! 原因在于开发模型时总是需要调...

2019-05-24 14:31:49

阅读数 6

评论数 0

注意力模型(Attention Model)理解和实现

在我们视野中的物体只有少部分被我们关注到,我们的焦点在某一时刻只聚焦在某些物体上面,而不是视野中的全部物体,这是我们大脑的一个重要功能,能够使得我们有效过滤掉眼睛所获取的大量无用的视觉信息,提高我们的视觉识别能力;神经网络中的注意力模型借鉴了我们人脑的这一功能,让神经网络模型对输入数据的不同部位的...

2019-05-21 20:50:00

阅读数 16

评论数 5

以Attention Model为例谈谈两种研究创新模式

在研读AttentionModel相关文献过程中,我再次深切感受到了科研中的两种创新模式:模型创新与应用创新。若干年前,也就是在我年轻不懂事的花样年华里,具体而言,就是在科学院读博士的后期,这种感受就已经比较明显,所以曾经在2006年写过一篇博客:自然语言处理领域的两种创新观念。当时谈的相对务虚一...

2019-05-18 15:18:55

阅读数 15

评论数 0

Zotero科研文献管理 - 将PDF文件同步到Google Driver中,不同电脑无缝使用

将Zotero中的附件文件比如PDF同步到Dropbox或者Onedrive或者Google Driver中,解决Zotero免费云空间限制,实现足够云空间附件文件存储,并实现不同电脑之间无缝迁移使用的解决方案。 因为Zotero的Attachment的云空间只支持300MB免费的,如果把PDF同...

2019-05-12 22:58:11

阅读数 18

评论数 0

使用LSTM进行莎士比亚风格诗句生成

本文章跟本人前面两篇文章(文章1, 文章1)的思路大体相同,都是使用序列化的数据集来训练RNN神经网络模型,然后自动生成相关的序列化。这篇文章使用莎士比亚诗词作为训练集,使用keras和tensorflow作为深度学习框架,训练具有自动生成莎士比亚风格诗句的神经网络模型。 源码和数据集的下载地址1...

2019-05-02 23:08:09

阅读数 166

评论数 0

使用RNN神经网络自动生成名字 (不使用深度学习框架,源码)

本文讲解在不使用深度学习框架的情况下,构建一个基本的RNN神经网络来进行名字自动生成。RNN模型请看下面的两张图片。本文主要讲解数据集以及输入模型的数据格式。 数据集和可执行的源码下载地址:https://github.com/liangyihuai/deeplearning_liang/tree...

2019-05-01 22:03:02

阅读数 20

评论数 0

使用LSTM神经网络进行音乐合成(数据格式,模型构建,完整源码)

本文章将讲解如何借用机器学习框架Tensorflow和Keras,构建LSTM神经网络模型,通过学习音乐数据,来自动合成一段音乐。 训练的原始音乐数据为:下载试听 合成的音乐例子:下载试听 完整代码(包含训练数据集):源码下载。其中主方法在MusicGenerator.py文件中。 1. 神经网...

2019-04-28 11:14:02

阅读数 88

评论数 0

RNN和LSTM的正向/前向传播-图示公式和代码

本文先讲的基础版本的RNN,包含内部结构示意图,公式以及每一步的python代码实现。然后,拓展到LSTM的前向传播网络。结合图片+公式+可运行的代码,清晰充分明白RNN的前向传播网络的具体过程。完整的可执行的代码见文末。 下面图片是RNN网络的整体示意图。每一个方框是“同一个节点处的不同时间点的...

2019-04-25 22:13:59

阅读数 60

评论数 0

Visual Studio 2017工程项目的几个重要文件解析

一般的VS项目目录结构为: 解决方案(solution)名字 xx.sln 配置文件 工程名字1 xx.vcxproj 配置文件 xx.vcxproj.user 配置文件 xx.vcxproj.filters 配置文件 工程名字2 xx.vcxproj 配置文件 xx.vcxproj...

2019-03-23 17:07:53

阅读数 33

评论数 0

最新(2019/3)CSDN博客Markdown编辑格式说明,包含效果图

@[TOC](这里写自定义目录标题) # 欢迎使用Markdown编辑器 你好! 这是你第一次使用 **Markdown编辑器** 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。 ## 新的改变 我们对Markd...

2019-03-23 16:06:32

阅读数 20

评论数 0

拟合系数 / 决定系数 / R方 / R^2的理解

先附上公式,来自wiki,然后给出个人理解: 上面公式中,红圈表示的是拟合系数计算公式,SSresSS_{res}SSres​表示真实值与预测值的差的平方之和,也就是预测值与真实值的误差。SStotSS_{tot}SStot​表示平方差,我们都知道平方差表示数值的离散程度,越大表示越离散。那么使...

2019-03-14 20:51:18

阅读数 321

评论数 0

MIT出品2017-2018深度学习最新进展汇总

本文内容整理自MIT教育视频,讲解的是近两年来深度学习一些方面最现今的进展,类似于综述。本文将列举出内容的纲要,视频连接资源和PPT资源下载链接。 视频的纲要 Deep Learning: State of the Art* (Breakthrough Developments in 2017 ...

2019-01-20 10:33:57

阅读数 226

评论数 1

Stream Processing:滑动窗口的聚集(aggregation)操作的优化算法讲解

在实时计算的流处理中,因为数据是以流的形式不断流入实时处理,把流数据保留到内存中以待以后再处理不是一个明智的选择,一般情况下是采用窗口window来缓存最近的一部分流数据,针对这部分数据处理得到结果。有多中window,包括tumble window,session window,sliding ...

2019-01-18 22:54:05

阅读数 201

评论数 0

在windows下基于visual studio2017和CMake的安装Google glog

这里简单记录安装google glog在windows下基于visual studio2017的安装过程。 下载 https://github.com/google/glog 使用cmake编译,编译结果存放在一个目录下,可命名为glog-built。在该目录下生成glob.sln文件 ...

2019-01-13 15:13:21

阅读数 349

评论数 0

Stream Processing:Apache Flink快照(snapshot)原理

本文将要讲解的是Apache Flink的分布式流处理的轻量级异步的快照的原理。网上已经有几篇相关的博文,而本文的不同之处在于,它不是论文的纯粹翻译(论文地址),而是用自己的语言结合自己的理解对其原理的阐述。 本文将同下面几个方面讲解: 什么是快照?为什么需要快照? 跟其他系统的快照相比...

2019-01-07 20:29:57

阅读数 306

评论数 0

各领域机器学习数据集汇总

(Stanford)69G大规模无人机(校园)图像数据集【Stanford】 http://cvgl.stanford.edu/projects/uav_data/ 人脸素描数据集【CUHK】 http://mmlab.ie.cuhk.edu.hk/archive/facesketch.html ...

2019-01-06 13:20:41

阅读数 217

评论数 0

Stream Processing: S4系统模型分析和关键源码读解

S4(Simple Scalable Stream System) 流数据处理系统是Yahoo!公司提出的,在2011年的时候成为Apache软件基金下的一个孵化项目,可惜的是在2014年的时候该孵化项目“退休”了,具体原因未知!!从这里可以了解它当前的状态信息:link. 阅读了所发表的论文S4...

2018-12-17 09:48:24

阅读数 97

评论数 0

分析JVM双亲委派模型的类加载源码 自定义类加载器

双亲委派模型下,在父类加载器无法加载的情况下再由当前类加载器去加载。具体的实现逻辑在java.util.ClassLoader抽象类的loadClass方法中。 Boostrap ClassLoader | Extension ClassLoader | Application Cla...

2018-12-16 20:37:36

阅读数 62

评论数 0

Java虚拟机学习

这是本人学习Java虚拟机(JVM)的笔记 在Oracle的hotspot中将方法区成为non-heap,特意与堆区分开来。 方法区用于存放Class的相关信息,比如类名,访问修饰符,常量池,字段描述,方法描述等。 常量池:存于方法区 1 字符串常量池 2 类(class)常量池( class文件...

2018-11-23 20:08:34

阅读数 65

评论数 0

Java虚拟机的静态常量池和运行时常量池

(静态)常量池:用于存放编译器生成的各种字面量和符号引用(符号引用区别于直接引用,后者在class字节码文件被虚拟机解析之后,符号引用将被替换为直接引用)。 运行时常量池:(静态)常量池中的内容在类加载(这里的类加载指class字节码文件经过加载连接初始化的过程)后存放入方法区的运行时常量池中。相...

2018-11-23 17:27:40

阅读数 188

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭