Codeforces Round #360 (Div. 1) A. NP-Hard Problem (二分图)

56 篇文章 2 订阅
31 篇文章 0 订阅
A. NP-Hard Problem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e.  or  (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 0001 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains kintegers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples
input
4 2
1 2
2 3
output
1
2 
2
1 3 
input
3 3
1 2
2 3
1 3
output
-1
Note

In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).

In the second sample, there is no way to satisfy both Pari and Arya.

题解:多校结束了,写道题压压惊。。。给你一些顶点和边,将顶点分为两组,同一组的任意两个顶点不能相连。输出两组的各点,若不能分,输出-1。

代码:

#pragma comment(linker, "/STACK:102400000,102400000")
#include<bits/stdc++.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cmath>
#include<queue>
#include<set>
#include<stack>
#include <utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define mst(a) memset(a, 0, sizeof(a))
#define M_P(x,y) make_pair(x,y)
#define pii pair<int,int>
#define rep(i,j,k) for (int i = j; i <= k; i++)  
#define per(i,j,k) for (int i = j; i >= k; i--)  
#define lson x << 1, l, mid  
#define rson x << 1 | 1, mid + 1, r  
const int lowbit(int x) { return x&-x; }  
const double eps = 1e-8;  
const int INF = 1e9+7; 
const ll inf =(1LL<<62) ;
const int MOD = 1e9 + 7;  
const ll mod = (1LL<<32);
const int N = 2e5+10; 
const int M=100010; 
template <class T1, class T2>inline void getmax(T1 &a, T2 b) {if (b>a)a = b;}  
template <class T1, class T2>inline void getmin(T1 &a, T2 b) {if (b<a)a = b;}
int read()
{
	int v = 0, f = 1;
	char c =getchar();
	while( c < 48 || 57 < c ){
		if(c=='-') f = -1;
		c = getchar();
	}
	while(48 <= c && c <= 57) 
		v = v*10+c-48, c = getchar();
	return v*f;
}
vector<int>G[100010];  
vector<int>ans[2];  
int vis[100010];  
int ok;  
int type[100010];  
void dfs(int u,int fa,int ty)  //u的父亲是fa
{  
     ans[ty].push_back(u);  //存储二分图 
     vis[u]=1;  
     type[u]=ty;
	 int d=G[u].size(); //结点u的相邻点个数 
     for(int i = 0;i< d ;i++)  
     {  
         int v = G[u][i];  //结点u的第i个相邻点v 
         if(v==fa)  
             continue;  
         if(vis[v]&&type[v]==type[u])  
             ok=1;  
         if(vis[v])  
             continue;  
         dfs(v,u,1-ty);  //把 v 的父亲设为 u,继续递归
     }  
}  
int main()  
{  
	#ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    #endif
    int n,m;  
    ok = 0;  
    scanf("%d%d",&n,&m);  
    for(int i=0;i<m;i++)  
    {  
        int u,v;  
        scanf("%d%d",&u,&v);  
        G[u].push_back(v);  
        G[v].push_back(u);  
    }  
    for(int i = 1;i <= n; i++)  
        if(!vis[i]&&!ok)  
            dfs(i,-1,0);  
    if(ok)  
    {  
       puts("-1");
       return 0;  
    }  
    printf("%d\n",ans[0].size());
    for(int i=0;i<ans[0].size()-1;i++)  
        printf("%d ",ans[0][i]);  
    printf("%d\n",ans[0][ans[0].size()-1]);
    
    printf("%d\n",ans[1].size());
    for(int i=0;i<ans[1].size()-1; i++)  
       printf("%d ",ans[1][i]);
    printf("%d\n",ans[1][ans[1].size()-1]);
    return 0;
}  




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值