问题描述
有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要将它们依次相乘,只能使用结合率,求最少需要多少次运算。
两个大小分别为p*q和q*r的矩阵相乘时的运算次数计为p*q*r。
两个大小分别为p*q和q*r的矩阵相乘时的运算次数计为p*q*r。
输入格式
输入的第一行包含一个整数n,表示矩阵的个数。
第二行包含n+1个数,表示给定的矩阵。
第二行包含n+1个数,表示给定的矩阵。
输出格式
输出一个整数,表示最少的运算次数。
样例输入
3
1 10 5 20
1 10 5 20
样例输出
150
数据规模和约定
1<=n<=1000, 1<=ai<=10000。
题解:区间dp。
设dp[i][j]表示区间【i,j】中的最少运算次数。
那么转移方程为:
dp[ i ][ j ]=min(dp[ i ][ j ], dp[ i ][ k ]+dp[ k+1 ][ j ]+a[ i-1 ]*a[ k ]*a[ j ] ).
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[1010];
ll dp[1010][1010];
ll solve(int n)
{
ll sum=0;
memset(dp,0,sizeof(dp));
for(int len=2;len<=n;len++)
{
int j=len;
for(int i=1;j<=n; i++,j++)
{
ll minn=1e18;
for(int k=i;k<j;k++)
{
minn=min(minn,dp[i][k]+dp[k+1][j]+a[i-1]*a[k]*a[j]);
}
dp[i][j]=minn;
}
}
return dp[1][n];
}
int main()
{
int n;
cin>>n;
for(int i=0;i<=n;i++)cin>>a[i];
cout<<solve(n)<<endl;
return 0;
}