问题描述
X 国的一个网络使用若干条线路连接若干个节点。节点间的通信是双向的。某重要数据包,为了安全起见,必须恰好被转发两次到达目的地。该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径。
源地址和目标地址可以相同,但中间节点必须不同。
如下图所示的网络。
1 -> 2 -> 3 -> 1 是允许的
1 -> 2 -> 1 -> 2 或者 1 -> 2 -> 3 -> 2 都是非法的。
输入格式
输入数据的第一行为两个整数N M,分别表示节点个数和连接线路的条数(1<=N<=10000; 0<=M<=100000)。
接下去有M行,每行为两个整数 u 和 v,表示节点u 和 v 联通(1<=u,v<=N , u!=v)。
输入数据保证任意两点最多只有一条边连接,并且没有自己连自己的边,即不存在重边和自环。
输出格式
输出一个整数,表示满足要求的路径条数。
样例输入1
3 3
1 2
2 3
1 3
1 2
2 3
1 3
样例输出1
6
样例输入2
4 4
1 2
2 3
3 1
1 4
1 2
2 3
3 1
1 4
样例输出2
10
题解:
因为要求必须恰好被转发两次到达目的地,树上dfs就可以了。
把每个节点dfs一遍,如果能回到当前节点就dfs 3次,否则就dfs 4 次。每次对答案贡献一次。把每个节点dfs完就可以得到答案了。
加了个读入挂....1s卡过....不过多交几次.....
代码:
#include<bits/stdc++.h>
using namespace std;
vector<int>V[10010];
int vis[10010];
int n,m;
int ans;
int rt;
//必须恰好被转发两次到达目的地
void dfs(int cur,int fa)
{
if(fa==3){
ans++;return ;
}
for(int i=0;i<V[cur].size();i++)
{
if(fa==2 && V[cur][i]==rt){
dfs( V[cur][i], fa+1 );
}
if(vis[ V[cur][i] ]==1)continue;
vis[V[cur][i]]=1;
dfs( V[cur][i], fa+1 );
vis[V[cur][i]]=0;
}
}
int read()
{
int v = 0, f = 1;
char c =getchar();
while( c < 48 || 57 < c ){
if(c=='-') f = -1;
c = getchar();
}
while(48 <= c && c <= 57)
v = v*10+c-48, c = getchar();
return v*f;
}
int main()
{
n=read();m=read();
for(int i=0;i<m;i++){
int x,y;
x=read();y=read();
V[x].push_back(y);
V[y].push_back(x);
}
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof vis);
vis[i]=1;
rt=i;
dfs(i,0);
}
printf("%d\n",ans);
return 0;
}