val
题目描述
有一个值初始为0,接下来n次你可以令其在之前基础上+2或+1或-1。你需要保证,这个值在整个过程中达到的最大值减去达到的最小值不大于k,求方案数,模1,000,000,007。
输入
仅一行,两个空格隔开的正整数n和k。
输出
仅一行,一个非负整数,表示方案数对1,000,000,007取模后的结果。
样例输入
【输入样例A】
3 2
【输入样例B】
233 99
样例输出
【输出样例A】
11
【输出样例B】
316461264
提示
【评分标准】
对于10%的数据,n,k<=15;
对于30%的数据,n,k<=75;
对于50%的数据,n,k<=300;
对于另10%的数据,k=1;
对于100%的数据,n,k<=5,000。
来源
solution
考场只会n^4Dp,还MLE了
首先我们考虑枚举它的上界,算出下界,然后可以n^2Dp
f[i][j]表示前i次操作,和为j的方案数
if(j-1>=0)f[i][j]=(f[i][j]+f[i-1][j-1])%mod;
if(j-2>=0)f[i][j]=(f[i][j]+f[i-1][j-2])%mod;
if(j+1<=k)f[i][j]=(f[i][j]+f[i-1][j+1])%mod;
然后扣去重复的方案即可。
但这样效率仍然过不去。
我们可以把移动上下界看成移动起点。
初始是把所有点都看成起点,一起计算。
然后可以发现,相邻两点重复方案的计算,与整体是相同的。
那么所有点的重复方案就是0~k-1的Dp值。
效率O(n^2)
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 5005
#define mod 1000000007
using namespace std;
int n,k,f[maxn][maxn];
int main()
{
cin>>n>>k;
for(int i=0;i<=k;i++)f[0][i]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<=k;j++){
if(j-1>=0)f[i][j]=(f[i][j]+f[i-1][j-1])%mod;
if(j-2>=0)f[i][j]=(f[i][j]+f[i-1][j-2])%mod;
if(j+1<=k)f[i][j]=(f[i][j]+f[i-1][j+1])%mod;
}
}
long long ans=0,aa=0;
for(int i=0;i<=k;i++)ans=(ans+f[n][i])%mod;
memset(f,0,sizeof f);
k--;
for(int i=0;i<=k;i++)f[0][i]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<=k;j++){
if(j-1>=0)f[i][j]=(f[i][j]+f[i-1][j-1])%mod;
if(j-2>=0)f[i][j]=(f[i][j]+f[i-1][j-2])%mod;
if(j+1<=k)f[i][j]=(f[i][j]+f[i-1][j+1])%mod;
}
}
for(int i=0;i<=k;i++)aa=(aa+f[n][i])%mod;
ans=ans-aa;ans=(ans%mod+mod)%mod;
cout<<ans<<endl;
return 0;
}