该算法来自--刘汝佳的算法竞赛入门经典。书中介绍了两种算法的核心代码,但却没有逐过程详细解说,另初学者看文字时很难看懂,
遇到问题,是先要直接研究问题的细节呢还是先把问题搞清楚?我认为绝对应该先学习如何去解决问题,构造方法的框架,而不是先去研究细节。
//方法一:
#include <iostream>
using namespace std;
int a[20];
/*递归输出n以内所有的子集,其中cur为当前下标,初始值0*/
void print_subset(int n,int* a,int cur){
for (int i=0;i<cur;i++)//每次递归输出当前子集,靠它来最后输出上一层指定的子集
cout<<a[i]<<' ';
cout<<endl;//以行分隔
//找到当前子集首个值,因为按字典顺序输出,所以每次找到最小的元素,cur>0则minElem=a[cur-1]+1,否则为0
int minElem = cur?a[cur-1]+1:0;
//从子集第一个值开始遍历,先不看下面的print_subset(n,a,cur+1);但看这for循环,
//可知是将子集第一个值从头往后依次赋值为minElem-n-1.每次第一个值变化后递归设置下一个值(相当于下一层的第一个值)
for (int i=minElem;i<n;i++){
a[cur]=i;//当前层子集第一个值
//cur+1表示当前层值设置完毕,开始递归下一层,和前面步骤一样。
//到达最后一层结束后return 到上一层,然后i++,a[cur]的值(首元素)改变,又反复递归下一层...
print_subset(n,a,cur+1);
}
}
int main(){
int n ;
while (cin>>n,n){
print_subset(n,a,0);
}
}
//方法二:
//思路:构造一个位向量b[],而不是直接构造子集A本身
#include <iostream>
using namespace std;
bool b[20]={0};//判断当前每一个节点选中状态
/*递归输出n以内所有的子集,其中b表示该节点是否选中,cur为当前下标,初始值0*/
void print_subset(int n,bool* b,int cur){
//当cur加到n的时候输出该串节点(解答树)的值
if(cur==n){
for (int i=0;i<n;i++){
if(b[i])
cout<<i<<' ';
}
cout<<endl;
return ;
}
b[cur]=true;//该节点设为选中状态
print_subset(n,b,cur+1);//cur+1递归该状态时的下一层节点,循环该操作
b[cur]=false;//该节点设为不选中状态
print_subset(n,b,cur+1);//cur+1递归该状态时的下一层节点,循环该操作
}
int main(){
int n ;
while (cin>>n,n){
print_subset(n,b,0);
}
}
//方法一:
//思路:构造一个位向量visit,而不是直接构造子集A本身