原题链接:https://ac.nowcoder.com/acm/contest/73422/F
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
小红上次输给了小紫,表示不服,于是又约来小紫来玩一个游戏。
这次是取石子游戏:共有n堆石子,两人轮流使用以下两种技能中的一种进行取石子:
1. 随机选择某一堆石子,取走其中的一颗石子。
2. 每一堆石子各取走一颗石子。
小红先手,谁先取完所有的石子谁获胜。两人都希望自己的获胜概率尽可能高,假设两人都绝顶聪明,请你计算小红最终获胜的概率。
输入描述:
第一行输入一个正整数n,代表石子的堆数。 第二行输入n个正整数ai,代表每一堆石子的数量。 1≤n≤1000 1≤ai≤2
输出描述:
一个整数,代表小红最终获胜的概率对1e9+7取模的值。可以证明,最终的答案一定是个有理数,你只需要输出其对1e9+7取模的结果。 分数取模的定义:假设答案是x/y,那么其对p取模的答案是找到一个整数a满足a∈[0,p-1]且a∗y对p取模等于x。
示例1
输入
2 1 2
输出
500000004
说明
显然小红会使用 1 技能,因为如果使用 2 技能则必输。 小红有1/2的概率取走第一堆石子的 1 颗(此后无论小紫怎么取,小红必胜),有1/2的概率取走第二堆石子的 1 颗(此时小紫只需要直接使用 2 技能则获胜,小红失败),因此小红最终获胜的概率是 1/2。因为 500000004*2=1000000008,对1e9+7取模恰好等于1,所以输出 500000004。
解题思路:
经典概率dp,首先题目说了要求小红获胜的概率,而小红是先手也就是要求先手获胜的概率。首先我们可以发现几个明显的性质。
性质1:如果不存在石子数为2的石堆那么先手必胜。
性质2:如果存在石子数为2的石堆那么肯定会使用技能1,也就是只从某一堆拿走一个,因为这个时候如果使用技能2那么当前先手必败,他足够聪明那么必然会使用技能1。
对于性质1可以用于初始化,根据性质2我们可以知道游戏过程中的操作实际就只有俩种了,这俩种操作是要么从石子数为1的那堆石子拿一个,要么从石子数为2的那堆石子拿一个。
知道了上面这俩个性质就可以考虑dp了。
状态定义:
定义d[i][j]表示当前总的石子堆数为i,石子数为2的石子堆数为j时先手获胜的概率,此时石子数为1的石子堆数可以通过i-j计算出来。
初始化:
f[i][0]=1,没有石子数为2的石子堆,先手必胜
状态转移:
(1)在一个石子数为1的石堆中拿掉一个石子,首先拿到石子数为1的石堆所占比例为(i-j)/i,然后f[i-1][j]就表示后手获胜的概率了,1-f[i-1][j]才是先手获胜的概率,inv(i)表示i的逆元。
(i-j)*inv(i)*(1-f[i-1][j])
(2)在一个石子数为2的石堆中拿掉一个石子,首先拿到石子数为2的石堆所占比例为j/i,然后f[i][j-1]就表示后手获胜的概率了,1-f[i][j-1]才是先手获胜的概率,inv(i)表示i的逆元。
j*inv(i)*(1-f[i][j-1])
最终答案
最终答案就是f[n][c[2]],c[2]表示石子数为2的石堆个数。
时间复杂度:dp第一维枚举为O(n),第二位枚举也为O(n),然后求逆元为O(logn),所以最终时间复杂度为O((n^2)*log(n)),n=1000,时间大概是1e7,这个时间复杂度是可以过的,如果我们预处理逆元,那么每次求逆元就是O(1)了,那么时间复杂度可以优化到O(n^2),也就是把二维循环里面的求逆元,先在外面预处理好,在时间要求更高时可以考虑这样优化,这也是常用的一种优化方式。
空间复杂度:dp数组f空间为二维,所以最终空间复杂度为O(n^2),n=1000,所以空间大概是1e6*4/1e6=4M,大概也就4M,题目给了俩百多M,空间是肯定足够的。
cpp代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=1010,mod=1e9+7;
int n;
int c[3]; //记录石子数为1的石子堆数和石子数为2的石子堆数
int f[N][N];
int qmi(int x,int k) //快速幂求逆元
{
int res=1;
while(k){
if(k&1)res=(LL)res*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return res;
}
int inv(int x) //求逆元
{
return qmi(x,mod-2);
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
c[x]++;
}
//dp处理过程
for(int i=0;i<=n;i++)
{
f[i][0]=1;
for(int j=1;j<=i;j++)
{
//题目要求输出的是和逆元有关,这里把除法写为逆元
f[i][j]=(LL)(i-j)*inv(i)%mod*((1-f[i-1][j]+mod)%mod)%mod+(LL)j*inv(i)%mod*((1-f[i][j-1]+mod)%mod)%mod;
f[i][j]%=mod;
}
}
//输出答案
cout<<f[n][c[2]]<<endl;
return 0;
}