每日一题17:八皇后问题

八皇后问题是一个经典的棋盘放置问题,目标是在8x8棋盘上放置8个皇后,使得它们不互相攻击。本文介绍了使用回溯法解决此问题的思路,包括检查皇后放置的合法性、搜索过程及代码实现。通过示例展示了在不同大小棋盘上的应用,强调回溯法在处理此类问题时的效率和适用性。
摘要由CSDN通过智能技术生成

八皇后问题是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出的:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。解题的思路如下:从棋盘的第一行起,先选择第一个格子作为第一个皇后的位置,然后在第二行中从第一个格子开始试探一个合适的位置放置第二个皇后,接下来在第三行从第一个格子开始试探一个合适的位置放置第三个皇后…以此类推,知道第八个皇后找到合适的位置。至此第一个满足要求的摆法出现。因为在每一行都是从第一个格子开始往后搜索的,为了穷尽所有的摆法,将最后一个皇后在最后一行中继续后挪,检查是否还有满足要求的摆法。当最后一行探测完毕,返回到上一行,将第七个皇后往后探测是否还有合适的位置,如果在第七行找到另一个满足要求的位置,那么又来到第八行,从第一个格子开始往后探测是否有放置第八个皇后的位置;如果第七行没有找到另一个合适的位置,那么程序转入第六行,将第六个皇后依次往后挪,探测另一个能够放置第六个皇后的位置…依次类推,这也就是回溯所要表达的意思:从某点A开始往前走了几步,当问题得到求解或不能得到解,再回到点A,朝其他方向继续往前走,探测问题的解或更多的解。
检查某个位置B是否可以放置一个皇后时,由于程序对棋盘是从上往下一行一行遍历的,所以只需要检查该位置以上的格子上是否有使得该位置不能放置一个皇后的格子:1)B位置以上同列的格子;2)B位置左斜对角线上方的格子;3)B位置右斜对角线上方的格子;行不用检测,因为一行只能放置一个皇后,如果已经存在一个皇后与B同行,该检查不会进行。

棋盘数据结构与创建棋盘的代码

#include "stdafx.h"

#include <iostream>

using namespace std;


const int candidate_pos = 0;
const int legal_pos = 1;

struct chessboard
{
    int size;
    int *board;
};

chessboard* create(int size)
{
    chessboard* cb = new chessboard;
    cb->size = size;
    cb->board = new int[size*size];
    memset(cb->board,0,size*size*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值