图_图的存储_添加边_图的遍历_DFS_树的重心_BFS_图中点的层次

树是特殊的图(无环连通图)

  • 有向图(a -> b

  • 无向图(a -> b, b -> a

有向图的存储

  • 邻接矩阵(适合稠密图)

  • 邻接表(n个单链表)

请添加图片描述

添加

void add(int a, int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx ++;
}

遍历

1.DFS
void dfs(int u)
{
    st[u] = true;
    for(int i = h[u]; i != -1; i = ne[i])
    {
        int t = e[i];
        if(!st[t]) dfs(t);
    }
}
例题:树的重心

请添加图片描述
删除4号节点,构成了三个子连通块,其中最大连通块的点数为5。
请添加图片描述

题目分析
  • 重心:删除节点1后最大连通块的点数为4,与删除其他节点相比该最大值最小,1为重心

  • 遍历每个点,求出删除每个点后最大连通块的点数。

  • 求所有最大连通块点数中的最小值

使用DFS遍历

在DFS回溯过程中可以求出子树的点数,以便比较该树中最大连通块的点数

ans:存答案(所有连通块的最大点数中的最小值)

res:存放删除该点以后连通块中点数的最大值

ans = min(res, ans)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = N*2;
int n;
int h[M],e[M],ne[M],idx;
bool st[N];
int ans = N;    //答案 => 最大连通块的最小值

void add(int a, int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

//返回以u为根的子树中点的数量
int dfs(int u)
{
    st[u] = true;

    int sum = 1;    //子树大小
    int res = 0;    //删除该点以后所有连通块的点数的最大值
    //遍历树
    for(int i = h[u]; i != -1; i = ne[i])
    {
        int t = e[i];   //在树中的序号
        if(!st[t])
        {
            int s = dfs(t);     //s记录当前子树的大小
            res = max(res, s);
            sum += s;   //把当前子树大小加入以u为根节点的树
        }
    }

    res = max(res, n - sum);        //还有一部分连通块为上面树
    ans = min(ans, res);

    return sum;
}

int main()
{
    memset(h, -1, sizeof h);
    cin >> n;
    for(int i = 0; i < n-1; i++)
    {
        int a,b;
        cin >> a >> b;
        add(a, b);
        add(b, a);
    }

    dfs(1);

    cout << ans << endl;

    return 0;
}
2.BFS
例题:图中点的层次

请添加图片描述

根据所有边的长度都是1,可用BFS求最短路,第一次遍历到的点即可为最短。

d[N]:存出该点到起点的距离,同时初始化为-1,可用其来判断是否为第一次遍历。

queue <= 1
while(queue 不空)
{
    t <= 队头
    队头出队
    拓展t的所有邻点x
        if(x未被遍历)
        {
            queue <= x
            d[x] = d[t] + 1
        }
}
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>

using namespace std;

const int N = 100010;
int e[N],ne[N],h[N],idx;
int d[N];

void add(int a, int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx ++;
}

void bfs(int u)
{
    memset(d, -1, sizeof d);
    
    queue<int> q;
    q.push(u);
    d[1] = 0;
    
    while(q.size())
    {
        int t = q.front();
        q.pop();
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j  = e[i];
            if(d[j] == -1)
            {
                q.push(j);
                d[j] = d[t] + 1;
            }
        }
    }
}

int main()
{
    memset(h, -1, sizeof h);
    
    int n,m;
    cin >> n >> m;
    int a,b;
    for(int i = 0; i < m; i++)
    {
        cin >> a >> b;
        add(a, b);
    }
    
    bfs(1);
    
    cout << d[n] << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值