- 博客(9)
- 收藏
- 关注
原创 大模型内部知识点及如何使用 (医疗方向)
Prompt Tuning 方式可以看做是 Prefix Tuning 的简化, 固定整个预训练模型参数,只允许将每个下游任务的额外k个可更新的 tokens 前置到输入文本中,(这些前缀是连续的伪 tokens,不对应真实的 tokens,只训练这些前缀参数),也没有使用额外的编码层或任务特定的输出层。GLMBlock的基本结构为:Layer Norm、Self Attention(输入和输出残差连接)、Layer Norm、GLU(输入和输出残差连接)。SAM-Med2D 医学图像。
2023-12-21 15:54:37 427 1
原创 大模型内部知识点及如何使用 (医疗方向)
一、高热度大模型一、高热度大模型1. LLM类2. LVM类SAM-Med二、网络结构三、如何使用已有的大模型。
2023-12-19 15:14:48 637 1
原创 GPT 应用于医疗软件的想法
例如:ChatCAD将大型语言模型LLMs集成到医学影像计算机辅助诊断网络,通过生成的诊断结果(分割、疾病的分类概率、病灶检测),患者和ChatCAD对话问些问题,生成更人性化的回答。例如:LLMs (大语言模型ChatGPT) 通用模型学习到语言的通用规律和模式,下游任务可 文本生成,文本分类,文本摘要,机器翻译,语音识别,智能客服。视觉转为语言,医学临床报告描述医学影像 (应用是要反过来,医学影像生成报告)图像+文字描述 → 图像 (图像修复,古画)视觉语言预训练,利用预训练模型,文本生成。
2023-04-21 15:22:45 438
原创 Pytorch 神经网络实践
1. 定义神经网络结构 (2种方法)import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torchsummary import summary# 定义网络类class Net1(nn.Module): def __init__ (self): super(Net1, self).__init__() #定义第一层卷积层, 输入维度=1, 输出维度=6, kernel
2022-05-29 21:17:40 569
原创 基于小波变换的图像去噪matlab仿真
一、前已完成任务情况 1、概况设计题目:基于正交变换与自适应滤波的图像去噪算法设计目的:设计一种基于正交变换域自适应滤波器的的图像去噪算法,在消除图像噪声的同时尽可能地保留图像固有的信息。提取出三个关键词:正交变换、自适应滤波、图像去噪matlab设计流程: 与单纯运用某种自适应算法相比,基于小波分解的自适应滤波算法在收敛速度和稳定性上都有了很大的提高
2016-05-02 16:18:14 22532 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人