1.druid-kafka-indexing-service
Kafka Indexing Service是Druid推出的利用Druid的Indexing Service服务实时消费Kafka数据的插件。该插件会在Overlord中启动一个supervisor,supervisor启动之后会在 Middlemanager中启动一些indexing tasks,这些tasks会连接到Kafka集群消费topic数据,并完成索引创建。您需要做的,就是准备一个数据消费格式文件,之后通过REST API手动启动supervisor。
2.druid-hdfs-storage
使用HDFS做为DeepStorage
3.druid-kafka-eight
消费Kafka数据的Firehose。实时节点通过Firehose来消费实时数据,Firehose是Druid中的消费实时数据模型。
4.druid-histogram
对histograms(直方图)值进行近似计算
5.druid-datasketches
使用得Druid的聚合操作能够使用datasketches(Java超快计算算法)库
6.druid-lookups-cached-global
全局缓存的查找适用于大小而无法在查询时通过的查找,或者由于数据将驻留在druid服务器中并由其处理而不希望在查询时通过的查找,并且这些查找足够小,可以合理地填充到内存中。这通常意味着每次查找都有数万到数万个条目。
全局缓存的查找都是从同一个缓存池中提取的,从而允许每个进程都有一个可由缓存的查找使用的固定缓存池。
全局缓存查找可以指定为集群范围内查找配置的一部分,将查找指定为一种类型的cachedNamespace。
7.mysql-metadata-storage
使用MySQL作为元数据数据库
8.kafka-emitter
这个扩展使用JSON格式将druid度量直接发送到kafka。
目前,Kafka不仅拥有良好的生态系统,还拥有随时可用的消费者API。因此,如果您当前使用的是Kafka,那么很容易集成各种工具或UI来监视这个扩展的druid集群的状态。