Stable Diffusion|提示词高阶用法(四)LoRA指定区域

你可能在使用LoRA模型时,总会因为LoRA的特定风格,影响到画面原本的人物形象,导致你可能需要不停的找新的LoRA模型去实验。作者本篇将会从“LoRA模型的分层控制”来介绍,如何在使用特定的LoRA模型,也可以不影响到画面原本的人物形象。如同下图这样的案例。

img

A4000显卡,SDWebUI原创生成

“LoRA分层控制”的教程,网络上已经有各路大佬总结过一些自己的分享了,不过在作者一一细品后,感觉都非常的学术派。在本篇作者就不再继续介绍学术理论了。感兴趣的朋友可以自行在B站或GitHub上查看相关的技术分享。

LoRA模型分层控制插件github.com/hako-mikan/sd-webui-lora-block-weight

作者本次分享将继续承接之前的AI漫画业务场景,介绍如何通过**“LoRA分层控制”**来进行角色形象风格的设定。

在介绍实操经验前,作者先简单介绍一下“如何使用LoRA模型的分层控制。”

众所周知,LoRA模型的标准使用格式为:

<lora:LoRA模型的名称:LoRA权重值>

而LoRA模型的分层控制,则是在LoRA权重值后,增加“:”,并添加的LoRA模型的17个分层的对应权重值代码。

<lora:LoRA模型的名称:LoRA权重值:分层权重值代码>
1234567891011121314151617
BASEIN01IN02IN04IN05IN07IN08MIDOUT03OUT04OUT05OUT06OUT07OUT08OUT09OUT10OUT11

如下表所示,LoRA的17个分层中,第一层是BASE层,也可以成为是开关层。代表这如果BASE层为0时,后面16层不管如何设置,LoRA的分层控制都无法使用。网上有一些大佬,强烈建议将开关层必须写为1(额…),这个作者持保留意见。

作者在多种LoRA模型的多轮实践后,推荐在二次元的AI绘画中,BASE层设为0.6,较为稳妥。如果这个值小于0.6,那么LoRA模型的特征将被淡化接近为无,如果大于0.6,比如为1时,LoRA模型的其他并不是你想要的特征将被放大。

如下图所示,作者在使用时,将17层权重值代码分为两部分:分层权重值(BASE层) + 分层代码(2~17层)

img

极虎漫剪 - LoRA分层控制功能


LoRA模型的应用场景

在二次元漫画的AI绘画场景中,LoRA模型主要用于让我们轻松画出特定的角色形象、场景穿搭、色彩画风。

那么我们将一个人物LORA的特征分下类 (人物LORA为例,容易理解)

角色容貌:主要为人物的脸型、五官等,有时候还伴有特定的表情和发型发饰。

角色服饰:主要为特定的服饰,比如机甲衣、汉服等;

画面风格:常见的画风多为仙侠风,国风,midjourney风格等;

LoRA | 角色容貌

分层权重值(BASE层):0.6
分层代码(2~17层):0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0

案例:

作者想生成的场景:一个穿着职业装的长发女孩下班后,走着街道。

画面描述:

  • 中文:一个女孩,银色长发,紫色眼瞳,眼镜,口红,黄色职业装,纤细的身材, 走路,街道背景,看着屏幕
  • 英文:1girl, silver long hair, purple eyes, glasses, lipstick, yellow business_suit, slim body, walking, street_background, looking at viewer,
(1girl, silver long hair, purple eyes, glasses),(yellow business_suit:1.4), lipstick, slim body, dynamic pose, dynamic angle,(street_background:1.3), (looking at viewer),
BREAK
(masterpiece:1.4, best quality), unity 8k wallpaper, ultra detailed, beautiful and aesthetic, perfect lighting, detailed background, realistic, solo, perfect detailed face, detailed eyes, highly detailed,  
<lora:害羞脸:0.8:0.6,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0>

img

A4000显卡,SDWebUI原创生成

可以发现:

  • 不使用LoRA的分层控制(不指定调用区域)时,LoRA模型影响了原本画面的结构(人物的姿态、发色、服装颜色等);
  • 使用LoRA的分层控制(指定调用脸部区域)后,LoRA模型仅影响了原本画面人物的脸部区域;
  • 在使用LoRA的分层控制后,并将BASE层数值从 0.6 调整至 1.0 后,LoRA模型除影响了原本画面人物的脸部区域外,还影响了姿态、发色。

因此,作者建议BASE层数值的默认值设为 0.6 ,因为不同的LoRA模型的训练的拟合程度不同,所以作者建议你使用时,也不能一味照搬,还是要基于实际结果调整。


LoRA | 角色服饰

分层权重值(BASE层):0.6
分层代码(2~17层):1,1,1,1,0,0.2,0,0.8,1,1,0.2,0,0,0,0,0

案例:

沿用上面的案例,作者希望女孩的服装不要太正式,时尚一点。因此此次加入了一个服装LoRA。

LoRA模型的地址:

是肚兜V1.0 - 1www.tusi.art/models/605263116525128948img

(1girl, silver long hair, purple eyes, glasses),(yellow business_suit:1.4), lipstick, slim body, dynamic pose, dynamic angle,(street_background:1.3), (looking at viewer),
BREAK
(masterpiece:1.4, best quality), unity 8k wallpaper, ultra detailed, beautiful and aesthetic, perfect lighting, detailed background, realistic, solo, perfect detailed face, detailed eyes, highly detailed,  
<lora:肚兜_shidudou:0.8:0.6,1,1,1,1,0,0.2,0,0.8,1,1,0.2,0,0,0,0,0>  

img

A4000显卡,SDWebUI原创生成

可以发现:

  • 不使用LoRA的分层控制(不指定调用区域)时,LoRA模型由于其训练特征,几乎影响了原本画面中的角色的全部特征(人物的姿态、发色、服装颜色等);
  • 使用LoRA的分层控制(指定调用服装区域)后,LoRA模型除影响了原本画面人物的服装的内搭区域,其他部分影响很小;
  • 在使用LoRA的分层控制后,并将BASE层数值从 0.6 调整至 1.0 后,LoRA模型除影响了原本画面人物的服装的内搭区域,对服装款式影响较大;

LoRA | 画面风格

分层权重值(BASE层):0.6
分层代码(2~17层):0,0,0,0.1,0.2,0,0,0,0,0.1,1,1,1,1,1,1 

案例:

沿用上面的案例,作者希望整个画面有一种春天的温暖感。因此此次加入了一个风格LoRA。

LoRA模型的地址:

吐司独家 | 这盛世,繁荣景象 | Prosperity in a prosperous era - V1www.tusi.art/models/610809727502360072img

(1girl, silver long hair, purple eyes, glasses),(yellow business_suit:1.4), lipstick, slim body, dynamic pose, dynamic angle,(street_background:1.3), (looking at viewer),
BREAK
(masterpiece:1.4, best quality), unity 8k wallpaper, ultra detailed, beautiful and aesthetic, perfect lighting, detailed background, realistic, solo, perfect detailed face, detailed eyes, highly detailed,  
 <lora:繁荣景象:0.8:0.6,0,0,0,0.1,0.2,0,0,0,0,0.1,1,1,1,1,1,1>

img

A4000显卡,SDWebUI原创生成

可以发现:

  • 不使用LoRA的分层控制(不指定调用区域)时,LoRA模型由于其训练特征,几乎影响了原本画面中的角色的全部特征(人物的姿态、发色、服装颜色等);
  • 使用LoRA的分层控制(指定调用上色层级)后,LoRA模型除对原本画面整体画风进行影响外,其他部分影响很小;

本期就介绍这三种较为通用的LoRA模型分层控制的案例,在作者的调研中,LoRA分层还可以指定特定姿态动作的调用,也可以反向调用,比如LoRA模型仅影响除头部以外的区域。但由于这几类分层代码的适用性不如以上三种的适用性高,因此作者就不在此次展开介绍了。有兴趣的朋友可以留言交流,也可以关注我的公众号

@杨三季

留言与我交流。

下期介绍

对于LoRA模型分层控制的实操就先介绍到这,下一篇将会介绍如何通过 Stable Diffusion 提示词生成特定的情绪表情以及画面视角的实操技巧。

img

A4000显卡,SDWebUI原创生成

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,用户想下载和安装Stable Diffusion模型或其他相关工具。首先我需要确认用户所说的“SD”具体指的是什么,但根据引用内容来看,应该是Stable Diffusion。接下来,我需要根据提供的引用信息,特别是引用[1]和引用[2],来整理出下载和安装的步骤。 首先,引用[1]提到了基础大模型、VAE模型和LORA模型的安装位置,这应该是在安装完成后的配置步骤。因此,我需要先指导用户如何下载这些模型。用户可能需要访问官方网站或社区平台,比如Hugging Face或CivitAI,来获取模型文件。然后,根据不同的使用界面(如WebUI),模型需要放置到对应的目录中。 接着,引用[2]中提到了作者使用Cascade模型和SD模型的对比,以及工作流的分享。这可能涉及到不同模型的选择和优化建议。因此,在回答中需要建议用户选择合适的模型版本,并参考社区经验进行优化。 用户的问题还提到“其他SD相关工具”,可能包括不同的用户界面或插件。例如,Automatic1111的WebUI或者ComfyUI都是常用的工具,需要指导用户如何安装这些工具,并正确配置模型。 需要注意LaTeX格式的使用,确保行内公式正确,比如如果有数学表达式的话,但当前问题可能不涉及太多数学内容,但需要保持结构清晰。同时,生成的相关问题要符合用户可能遇到的后续疑问,比如模型选择、安装问题解决、优化方法等。 最后,确保回答引用正确,引用标识放在相关步骤的末尾,如模型安装位置参考引用[1],模型优化和社区交流参考引用[2]。</think>### Stable Diffusion模型下载与安装指南 #### 一、基础模型下载与安装 1. **下载渠道**: - 官方模型:通过Hugging Face平台获取基础模型(如`stable-diffusion-v1-5`)[^1] - 社区模型:CivitAI、LiblibAI等平台提供丰富第三方模型(如ChilloutMix、DreamShaper等) 2. **安装步骤**: 1. 下载`.ckpt`或`.safetensors`格式的模型文件 2. 将文件放入指定目录: - WebUI用户:`models/Stable-diffusion/` - ComfyUI用户:`models/checkpoints/` - VAE模型需单独放置于`models/VAE/`目录 ```text 模型目录示例 ├── models │ ├── Stable-diffusion │ │ └── v1-5-pruned-emaonly.safetensors │ └── VAE │ └── orangemix.vae.pt ``` #### 二、扩展工具安装 1. **常用界面工具**: - **Automatic1111 WebUI**(推荐新手): ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui ``` - **ComfyUI**(适合高阶用户): ```bash git clone https://github.com/comfyanonymous/ComfyUI ``` 2. **插件管理**: - ControlNet:通过Extensions标签页安装 - LoRA适配器:需下载`.safetensors`文件并放入`models/Lora/`目录 #### 三、模型优化建议 1. **版本选择**: - 基础生成:SD 2.1适用于通用场景 - 人像优化:推荐ChilloutMix系列 - 艺术创作:可使用DreamlikeDiffusion 2. **性能调优**: - 启用VAE解码器提升画质 - 参考Liblibartlib3模型的优化经验[^2] - 使用`--medvram`参数降低显存占用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值