【closerAI ComfyUI】太惊艳了!AI模特穿衣混搭秀三视图展示+换装,一次生成服装展示图,完美和高效并存!推荐!

【closerAI ComfyUI】太惊艳了!AI模特穿衣混搭秀三视图展示+换装,一次生成服装展示图,完美和高效并存!推荐!

img

可以说,三重控制是基础了。大家熟悉了这个思路和原理之后,能衍生出很多样的应用。相信你们也想到。这期,我们基于closerAI flux生态的三重控制原理,实现模特穿衣三视图展示,形成我们衣服的宣传图。

当然,也相当于是灵活应用学习到的内容了。

那么,如何实现穿衣一致性、人物一致性地生图呢?

这里我们分了两个工作流,主要是因为一个工作流来生成,搞不起来,同时时间长。 这里我将它分成了两个工作流:

1、CloserAI F1模特穿衣混搭秀三视图三阶生图工作流

2、CloserAI F1模特穿衣混搭秀三视图换装工作流

思路讲解

也就是,我们首先通过生成模特一致性,衣服一致性的图,这里模特可以加入pulid flux来进行换脸,但我们这个留在V2.0版本,1.0版本主要实现一致性的模特和服装生图。

第一个工作流:CloserAI F1模特穿衣混搭秀三视图三阶生图工作流

img 如上图示。这个工作流主要是通过一张图生成三视图,使用了flux同一张图能很好地保持物体一致性的原理。这里,通过提示词来实现:

提示词如下:

RAW格式的照片,高清,4K一张真实的模特穿搭照片,这张照片由三视图组成,从左到右分别是左侧、正面、右侧,人物是同一个人要保持一致性,且图片要形成一张整体展示的图。这张图由以下部分组成:左侧(从左侧展示模特,不要展示面部):一位苗条的亚洲女孩的侧面轮廓照片 +(衣服和配饰应被完整描述,没有任何遗漏的物品);中间(正面视图):一位苗条的亚洲女孩的全身正面照片 +(衣服和配饰必须被完整描述,没有任何遗漏的物品);右侧(人物背面,无需描述面部表情):一位苗条的亚洲女孩的全身背面照片 +(衣服和配饰必须被完整描述,没有任何遗漏的物品);
Photos in raw format, HD, 4KA real model outfitting photo, three views, namely the left side, the front side, and the right side. The characters are the same person to maintain consistency, and the picture should form an overall display.This diagram consists of the following parts:Left (model shown from left without face): profile photo of a slim Asian girl + (clothes and accessories should be fully described without any missing items);Middle (front view): full body front photo of a slim Asian girl + (clothes and accessories must be fully described without any missing items);Right side (back of character, no need to describe facial expression): full back photo of a slim Asian girl + (clothes and accessories must be fully described, no missing items);

大家参考下吧。然后结合我们之前学习到的三阶生图原理来实现生图。

【closerAI ComfyUI】这方法很牛逼!flux三阶放大技术,让图像细节飞跃,告别粗糙塑料感,呈现极致清晰画质!推荐!

得出以下图片:

img 非常棒,要严谨一些的话,每个视图的提示词都要保持同样的衣服、配饰的描述。

img

我们就用第一张来换装吧。这里随机生成即可。如果对于服装,人物有要求,可在提示词中加入即可。

第二个工作流就是直接使用我们之前学习的【closerAI ComfyUI】物体转移术之AI模特换装,Flux三重控制万物一致性生图,赋能电商产品行业,小白两步完成!

img 工作流如上图示。具体思路原理,大家看回原来的即可。

我们直接使用工作流。两步出图,第一步加载图片,服装图和三视图。

第二步补充遮罩,右键“在遮罩中编辑”,如不修正,则直接保存。

大家可以注意到,遮罩是自动实现的,如下图,但我们的服装是有袖子的,有些粉丝说不一致,手动补全两边袖子遮罩,自动遮罩是建立在原图的基础上,原图是无袖的则自动遮罩出无袖的衣服。这里我没有补全生图了。下一张再补全。

img

生图结果如下:

下面是换装前。

img

img

这张是换装后:非常棒。

img

我们再测试下:补全遮罩

img

下面是原图对比。

img

下面是效果对比。

img

最终如下:

img

灵活运用各个工作流,赋能日常工作,提高效率,我想这就是AI绘画带来的最直接的价值了。

以上是closerAI团队制作的stable diffusion comfyUI closerAI开发的AI模特穿衣混搭秀三视图展示+换装工作流介绍,大家可以根据工作流思路进行尝试搭建。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

在这里插入图片描述

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

在这里插入图片描述

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

在这里插入图片描述

在这里插入图片描述

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值