cv字符识别
libaochuan1949
这个作者很懒,什么都没留下…
展开
-
模型集成
5 模型集成本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。5.1 学习目标学习集成学习方法以及交叉验证情况下的模型集成 学会使用深度学习模型的集成学习5.2 集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。5原创 2020-06-03 09:36:58 · 177 阅读 · 0 评论 -
模型训练与验证
4.1 学习目标理解验证集的作用,并使用训练集和验证集完成训练 学会使用Pytorch环境下的模型读取和加载,并了解调参流程4.2 构造验证集在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在测试集的泛化效果较差,这种现象称为过拟合(Overf原创 2020-05-30 20:12:40 · 964 阅读 · 0 评论 -
Datawhale零基础入门cv - Task1 赛题理解
1 赛题理解以前只做过kaggle中的猫狗图像二分类问题,用的是keras框架,感觉比较简单。与猫狗图像二分类问题相比,字符识别的难度一下子就提升了,字符识别属于多分类问题,如果加上目标检测的话,难度就更大了,对于模型的选择可能就不一样了。2 解题思路目前,我只是想到了先把原图由彩色图转化为灰度图,然后进行图像增强再进行分割,将数字分隔开之后二值化图像,选取VGG16模型来进行训练,识别而出每一个数字之后再进行合并,就解决了字符长度不等的问题。或者是直接将原图像中的数字长度定为六位数,然后将一百原创 2020-05-20 15:01:47 · 127 阅读 · 0 评论