[LeedCode OJ]#213 House Robber II

【 声明:版权所有,转载请标明出处,请勿用于商业用途。  联系信箱:libin493073668@sina.com】


题意:
有一个环形的街道,街道上有一系列的房子,还是一个小偷去偷东西,还是不能偷相邻的房子,问小偷能够得到的最大价值是多少

思路:
dp[i][j]代表小偷对于第i个房子采取的行动,j=0代表不偷,j=1代表偷
那么就能得到状态转移方程:
dp[i][0] = max(dp[i-1][0],dp[i-1][1]);
dp[i][1] = dp[i-1][0]+nums[i];
然后怎么处理头尾相邻的情况呢?
那么我们只需要在初始化的时候动手脚就行了
首先,如没有偷0号房
那么我们令dp[0][0] = dp[1][0] = 0即可
然后再来一次循环处理1号房被偷的情况,这时1号房必然没有被偷
那么就得到dp[1][0] = dp[1][1] = nums[0]

class Solution
{
public:
    int rob(vector<int>& nums)
    {
        int len = nums.size();
        if(len==0)
            return 0;
        if(len == 1)
            return nums[0];
        if(len == 2)
            return max(nums[0],nums[1]);
        int i,j;
        int (*dp)[2] = new int[len+2][2];
        int ans = 0;
        //0号房没有偷
        dp[0][0] = dp[0][1] = 0;
        for(i = 1; i<len; i++)
        {
            dp[i][0] = max(dp[i-1][0],dp[i-1][1]);
            dp[i][1] = dp[i-1][0]+nums[i];
        }
        ans = max(dp[len-1][0],dp[len-1][1]);//那么最后的房子可以偷可以不偷,取最大值
        //0号房被偷
        dp[1][0] = nums[0];
        dp[1][1] = nums[0];
        for(i = 2; i<len; i++)
        {
            dp[i][0] = max(dp[i-1][0],dp[i-1][1]);
            dp[i][1] = dp[i-1][0]+nums[i];
        }
        ans = max(ans,dp[len-1][0]);//那么最后的房子必然不能偷
        return ans;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值