引言:
黄金作为一种重要的贵金属,一直以来都是投资者和交易者关注的对象之一。黄金价格的变动对于金融市场和经济发展具有重要的指示意义。因此,能够准确预测黄金价格对于投资者和市场参与者来说至关重要。本文将介绍基于深度学习卷积神经网络(CNN)中的时间卷积网络(TCN)来预测黄金价格的方法,并提供完整的代码和数据。
一、数据集介绍:
在进行黄金价格预测前,我们需要一个合适的数据集。本文选取了包括过去十年间的每日黄金价格作为训练数据。数据集包含了黄金价格的开盘价、收盘价、最高价、最低价等特征。这些数据可以从金融市场相关网站或金融数据提供商获取。
二、数据预处理:
在进行深度学习模型训练之前,我们需要对数据进行预处理。首先,我们将原始数据按照时间顺序进行排序。然后,可以对数据进行标准化处理,使得各个特征的数值范围在0到1之间,以加速模型的收敛速度。最后,我们将数据集分为训练集和测试集,用于模型的训练和评估。
# 数据预处理示例代码
import numpy as np
from sklearn