算法java实现--分支限界法--单源最短路径问题

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qipanliming/article/details/26396625

单源最短路径问题的java实现(分支限界法)

具体问题描述以及C/C++实现参见网址

http://blog.csdn.net/liufeng_king/article/details/8900872

import java.util.Collections;
import java.util.LinkedList;
import java.util.Scanner;
/**
 * 单源最短路径问题--分支限界法
 * @author Lican
 *
 */
public class BBShortest {
	public static class Heapnode implements Comparable{
		int id;//顶点编号
		float length;//当前路长
		public Heapnode(int ii,float ll){
			id=ii;
			length=ll;
		}
		@Override
		public int compareTo(Object x) {
			float xl=((Heapnode)x).length;
			if(length<xl) return -1;
			if(length==xl) return 0;
			return 1;
		}

		
	}
	public static void shortest(float[][] a,int v,float[] dist,int[] p){
		//dist[j]保存从源到顶点j的距离;p[j]记录从源到顶点j的路径上的前驱顶点
		int n=p.length-1;
		LinkedList<Heapnode> nodes=new LinkedList<Heapnode>();//用LinkedList存储最小堆
		Heapnode enode=new Heapnode(v,0);
		for(int j=1;j<=n;j++){
			dist[j]=Float.MAX_VALUE;
		}
		while(true){//搜索问题解空间			
			for(int j=1;j<=n;j++){
				if(a[enode.id][j]!=-1&&enode.length+a[enode.id][j]<dist[j]){
					//顶点i到j可达,同时长度小于dist[j]
					dist[j]=enode.length+a[enode.id][j];
					p[j]=enode.id;
					Heapnode e=new Heapnode(j,dist[j]);
					nodes.add(e);
					Collections.sort(nodes);
				}
			}
			//取下一个扩展结点
			if(nodes.isEmpty())
				break;
			else{				
				enode=(Heapnode) nodes.poll();
			}
			
		}
		for(int i=2;i<=n;i++){
			System.out.println(i+"节点的最短距离是:"+dist[i]+";前驱点是:"+p[i]);
		}
	}
	public static void main(String[] args) {
		System.out.println("请输入图顶点的个数:");
		Scanner sc = new Scanner(System.in);
		String line = sc.nextLine();
		int n = Integer.parseInt(line);
		System.out.println("请输入图的路径长度:");
		float[][] a = new float[n+1][n+1];//下标从1开始,以下都是
		float[] dist = new float[n+1]; 
		int[] prev = new int[n+1];
		for(int i=0;i<n;i++){
			line =  sc.nextLine();			
			String[] ds = line.split(",");
			for(int j = 0;j<ds.length;j++){
				a[i+1][j+1]=Float.parseFloat(ds[j]);
			}
		}				
		int v =1;//顶点从1开始
		shortest(a,v,dist,prev);
	}
}
/**
 * 以下为输入输出
 * 
 * 输入:
 5
-1,10,-1,30,100
-1,-1,50,-1,-1
-1,-1,-1,-1,10
-1,-1,20,-1,60
-1,-1,-1,-1,-1


* 输出:
2节点的最短距离是:10.0;前驱点是:1
3节点的最短距离是:50.0;前驱点是:4
4节点的最短距离是:30.0;前驱点是:1
5节点的最短距离是:60.0;前驱点是:3
*/


展开阅读全文

没有更多推荐了,返回首页