回归-理论补充

文章探讨了最小二乘法与极大似然估计的关系,强调了在假设上的三个性质:内涵性、简化性和发散性。介绍了线性回归中的正则化技术,包括L1和L2正则化以及ElasticNet,以及不同类型的梯度下降算法,如批量、随机和mini-batch。
摘要由CSDN通过智能技术生成

目录

一。使用极大似然估计解释最小二乘法(误差)

二。假设具有的三个性质

1.假设的内涵性

2.假设的简化性

3.假设的发散性

三。θ的解析式的求解过程(θ为系数)

四。线性回归的复杂度惩罚因子(正则化) 

五。广义逆矩阵(违逆)

六。梯度下降算法

1.批量梯度下降算法

2.随机梯度下降算法

3.折中:mini-batch 


一。使用极大似然估计解释最小二乘法(误差)

 

 高斯分布即正态分布,实际问题中,很多随机现象可以看做众多因素的独立影响的综合反应,往往近似服从正态分布。

 

二。假设具有的三个性质

1.假设的内涵性

所谓假设,就是根据常理应该是正确的。假设的第一个性质:假设往往是正确的但不一定总是正确。 我们可以称之为“假设的内涵性”。

2.假设的简化性

假设只是接近真实,往往需要做若干简化。如,在自然语言处理中,往往使用词袋模型 (Bag Of Words),认为一篇文档的词是独立的— —这样的好处是计算该文档的似然概率非常简洁,只需要每个词出现概率乘积即可。但我们知道这个假设是错的:一个文档前一个词是“正态”,则下一个词极有可能是“分布”,文档的词并非真的独立。这个现象可以称之为“假设的简化性”。

3.假设的发散性

在某个简化的假设下推导得到的结论,不一定只有在假设成立时结论才成立。如,我们假定文本中的词是独立的,通过朴素 贝叶斯做分类(如垃圾邮件的判定)。我们发现:即使使用这样明显不正确的假设, 但它的分类效果往往在实践中是堪用的。这个现象可以称之为“假设的发散性”。

三。θ的解析式的求解过程(θ为系数)

 

四。线性回归的复杂度惩罚因子(正则化) 

损失函数后面会添加的一个额外项,包括L1正则化和L2正则化,可以看做是损失函数的惩罚项。

一般都会在正则化项之前添加一个系数,Python的机器学习包sklearn中用α表示。

L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择(降维)。(lasso)

L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合。(ridge)

Elastic Net将L1正则和L2正则结合到一起

五。广义逆矩阵(违逆)

六。梯度下降算法

1.批量梯度下降算法

 

2.随机梯度下降算法

3.折中:mini-batch 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PURE-li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值