自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(136)
  • 资源 (33)
  • 收藏
  • 关注

原创 奥运会数据分析,奥林匹克数据分析并绘图,python数据分析绘图,期末大作业项目

目录设置Python环境查看输入目录中的文件加载并查看数据集计算不重复活动次数根据活动特定的身高-体重平均值填充缺失值处理年龄列中的缺失值删除奖牌列中的缺失值数据可视化年龄的箱形图城市频率的条形图奖牌频率的条形图季节频率的条形图性别身高体重的散点图​编辑不同奖牌获得者的身高体重分布按季节划分的年龄分布箱形图按性别划分的体重分布(按季节)部分运行截图:以下为部分代码示例以及运行截图:完整代码以及数据集在以下

2025-01-14 15:44:19 946

原创 Vue 3 中 watch 监控的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种机制来响应数据的变化。在 Vue 3 中,watch是一个特别有用的选项,它允许你监听特定的数据属性,并在这些属性发生变化时执行自定义逻辑。本文将详细介绍 Vue 3 中watch的用法、工作原理以及一些最佳实践,并通过具体的代码示例帮助你更好地掌握这一功能。watchwatch选项用于定义一个或多个观察者(watcher),它们会监视指定的数据属性的变化。

2024-12-19 08:58:42 1378

原创 Vue 2 中 watch 监控的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种机制来响应数据的变化。在 Vue 2 中,watch是一个特别有用的选项,它允许你监听特定的数据属性,并在这些属性发生变化时执行自定义逻辑。本文将详细介绍 Vue 2 中watch的用法、工作原理以及一些最佳实践,并通过具体的代码示例帮助你更好地掌握这一功能。watchwatch选项用于定义一个或多个观察者(watcher),它们会监视指定的数据属性的变化。

2024-12-19 08:54:39 1670

原创 Vue 2 中页面跳转方式的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种方法来实现页面之间的导航。在 Vue 2 中,页面跳转主要通过 Vue Router 来管理,同时也支持其他方式如编程式导航和使用锚点链接。本文将详细介绍 Vue 2 中的各种页面跳转方式,并通过具体的代码示例帮助你更好地掌握这些功能。

2024-12-18 09:04:28 2035

原创 Vue 3 中页面跳转方式的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种方法来实现页面之间的导航。在 Vue 3 中,页面跳转主要通过 Vue Router 来管理,同时也支持其他方式如编程式导航和使用锚点链接。本文将详细介绍 Vue 3 中的各种页面跳转方式,并通过具体的代码示例帮助你更好地掌握这些功能。

2024-12-18 08:57:42 2579

原创 Vue 3 中 v-model 指令的使用详解

v-model是 Vue 提供的一个语法糖,它使得在表单控件元素与应用状态之间建立双向绑定变得非常简单。这意味着你可以轻松地将用户的输入反映到组件的状态中,并且当组件的状态发生变化时,相应的表单元素也会自动更新。v-model除了原生的 HTML 表单元素,v-model还可以在自定义组件上使用,以实现更复杂的双向绑定逻辑。要使v-model接受一个名为modelValue的 prop(默认情况下)。触发一个名为的事件来更新父组件的数据。例如:<template></div>

2024-12-17 08:59:05 2144

原创 Vue 2 中 v-model 指令的使用详解

v-model是 Vue 提供的一个语法糖,它使得在表单控件元素与应用状态之间建立双向绑定变得非常简单。这意味着你可以轻松地将用户的输入反映到组件的状态中,并且当组件的状态发生变化时,相应的表单元素也会自动更新。v-model除了原生的 HTML 表单元素,v-model还可以在自定义组件上使用,以实现更复杂的双向绑定逻辑。要使v-model接受一个名为value的 prop。触发一个名为input的事件来更新父组件的数据。

2024-12-17 08:55:00 1895

原创 Vue 3 中 v-html 指令的使用详解

v-html指令用于更新元素的innerHTML。与简单的文本插入不同,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-16 09:41:35 2984

原创 Vue 2 中 v-html 指令的使用详解

v-html指令用于更新元素的innerHTML。与简单的文本插入不同,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-16 09:39:09 1546

原创 在 Vue 3 中实现 Switch-Case

props: {value: {},watch(</script><template><script>props: {when: {},</Case></Switch>

2024-12-15 10:15:00 716

原创 在 Vue 2 中实现 Switch-Case 逻辑

props: {value: {},data() {return {},watch: {},return {</script>Case.vue<template><script>props: {when: {},

2024-12-15 10:15:00 1043

原创 在 Vue 3 中隐藏页面元素的方法

有时我们需要更细粒度地控制元素的样式,比如不仅仅是隐藏,而是改变透明度、尺寸等。这时可以使用动态绑定类名,结合 CSS 来实现更复杂的效果。示例代码(使用 Composition API):<template><div></div>.hidden {opacity: 0;

2024-12-14 20:38:58 802

原创 在 Vue 2 中隐藏页面元素的方法

有时我们需要更细粒度地控制元素的样式,比如不仅仅是隐藏,而是改变透明度、尺寸等。这时可以使用动态绑定类名,结合 CSS 来实现更复杂的效果。示例代码</div><style>.hidden {opacity: 0;</script>

2024-12-14 20:32:59 721

原创 Vue 3 中 v-text 和 v-html 指令的使用详解

v-text指令用于更新元素的。无论元素原来的内容是什么,v-text都会将其替换为指定的文本内容。这意味着任何已有的子节点都会被移除,仅保留纯文本。v-html指令用于更新元素的innerHTML。与v-text不同的是,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-13 09:41:14 1367

原创 Vue 2 中 v-text 和 v-html 指令的使用详解

v-text指令用于更新元素的。无论元素原来的内容是什么,v-text都会将其替换为指定的文本内容。这意味着任何已有的子节点都会被移除,仅保留纯文本。v-html指令用于更新元素的innerHTML。与v-text不同的是,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-13 09:38:00 1455

原创 Vue 2 中 v-for 指令的使用详解

v-for是 Vue 提供的一个用于循环渲染列表的指令,它可以基于任何可迭代的数据源(如数组、对象)创建一组相似的元素或组件。每当数据源发生变化时,Vue 会智能地更新 DOM,确保只对必要的部分进行操作,从而提高性能。

2024-12-12 09:10:27 1424

原创 Vue 3 中 v-for 指令的使用详解

v-for是 Vue 提供的一个用于循环渲染列表的指令,它可以基于任何可迭代的数据源(如数组、对象)创建一组相似的元素或组件。每当数据源发生变化时,Vue 会智能地更新 DOM,确保只对必要的部分进行操作,从而提高性能。

2024-12-12 09:07:08 2281

原创 Vue 3 中 v-if 指令的使用详解

v-if是 Vue 提供的一个条件渲染指令,当绑定到它的表达式返回true或者其他真值时,元素会被插入到 DOM 中;反之,如果表达式返回false或者假值,则该元素不会被渲染,也不会存在于 DOM 树中。这意味着v-if实现了真正的条件性渲染,而不是仅仅隐藏元素。

2024-12-11 14:32:41 3349

原创 Vue 2 中 v-if 指令的使用详解

v-if是 Vue 提供的一个条件渲染指令,当绑定到它的表达式返回true或者其他真值时,元素会被插入到 DOM 中;反之,如果表达式返回false或者假值,则该元素不会被渲染,也不会存在于 DOM 树中。这意味着v-if实现了真正的条件性渲染,而不是仅仅隐藏元素。

2024-12-11 14:26:47 1486

原创 Vue 3 中的变量与数据结构详解

Undefined。

2024-12-10 09:12:56 1559

原创 Vue 2 中的变量与数据结构详解

Undefined。

2024-12-10 09:09:40 700

原创 Vue 3 中的 Scope Slot(作用域插槽)详解

在 Vue 中,组件是可复用的 UI 构建块,它们可以封装自己的模板、逻辑和样式。然而,有时候我们希望父组件能够自定义子组件内部的内容展示方式,同时还能访问子组件提供的数据或状态。这就是作用域插槽的作用——它允许父组件向子组件传递数据的同时,保留对这些数据的控制权。

2024-12-09 10:45:58 930

原创 Vue 3 中的 Scope Slot(作用域插槽)详解

在 Vue 中,组件是可复用的 UI 构建块,它们可以封装自己的模板、逻辑和样式。然而,有时候我们希望父组件能够自定义子组件内部的内容展示方式,同时还能访问子组件提供的数据或状态。这就是作用域插槽的作用——它允许父组件向子组件传递数据的同时,保留对这些数据的控制权。

2024-12-09 10:39:48 1673

原创 Vue 2 中的 Scope Slot(作用域插槽)详解

作用域插槽是 Vue 提供的一种特殊类型的插槽,它不仅能够自定义内容,还能让父组件访问子组件内部的数据或逻辑。换句话说,它提供了一种机制,使得父组件可以在渲染子组件时接收来自子组件的数据,并根据这些数据来定制化显示的内容。这极大地增强了组件间的交互性和可复用性。

2024-12-09 10:27:26 1179

原创 Vue 3 生命周期函数详解

Vue 实例从创建到销毁经历了一系列的阶段,这些阶段被称为生命周期。在每个阶段,Vue 提供了相应的钩子函数(Lifecycle Hooks),允许开发者在特定的时间点执行自定义逻辑。| |v v| |v v| |v vVue 3 引入了 Composition API 和setup函数,使得组件逻辑更加模块化和可复用。此外,部分生命周期钩子名称有所变化,以更清晰地表达其含义。

2024-12-08 18:41:16 4789

原创 Vue 2 生命周期函数详解

Vue 实例从创建到销毁经历了一系列的阶段,这些阶段被称为生命周期。在每个阶段,Vue 提供了相应的钩子函数(Lifecycle Hooks),允许开发者在特定的时间点执行自定义逻辑。

2024-12-08 18:36:17 658

原创 Vue 2 中的双向数据绑定详解

双向数据绑定意味着当用户交互改变视图中的值时,这些更改会自动反映到关联的数据模型中;同样地,如果通过代码修改了数据模型,相应的视图也会即时更新。这种机制极大地简化了前端开发工作流,使得开发者可以更加专注于业务逻辑的实现,而不必担心手动管理DOM操作。

2024-12-06 09:00:36 1410

原创 Vue 2 中的计算属性(Computed Properties)详解

计算属性是 Vue 提供的一种特殊的数据属性,它能够根据其他数据的变化自动更新。相比于直接在模板中编写复杂的表达式,计算属性提供了更好的代码可读性和性能优化,因为它们只会在依赖的数据发生变化时才重新计算。

2024-12-06 08:55:57 1169

原创 Vue 3 中的计算属性(Computed Properties)详解

计算属性是 Vue 提供的一种特殊的属性类型,它能够根据其他数据的变化而自动生成新的值。相比于直接在模板中编写复杂的表达式,计算属性提供了更好的代码可读性和维护性,并且性能更优,因为 Vue 能够智能地跟踪计算属性的依赖关系,在相关数据变化时才重新计算。

2024-12-05 13:11:47 2196

原创 CSS Position(定位)详解

属性是控制元素布局和定位的关键属性之一。它允许开发者对网页上的元素进行精确定位,以创建复杂且美观的页面结构。,并解释它们之间的区别及应用场景。

2024-12-05 13:09:36 780

原创 CSS Padding 和 Margin 全解析

是两个非常基础且重要的属性,它们用于控制元素周围的空白区域。理解这两个属性的区别和用法,对于创建良好的布局和用户体验至关重要。**Padding(内边距)**是指元素内容与边框之间的空间。它增加了元素内部的空间,使得内容不会紧贴着边框显示,从而改善视觉效果和可读性。**Margin(外边距)**是位于元素边框之外的空间,用来隔开相邻元素。它不影响元素自身的尺寸,而是改变了元素与其他元素之间的距离。的概念、区别以及如何在实际项目中使用它们,并附上代码示例。

2024-12-04 13:21:04 3387

原创 常见的 CSS 对齐方式介绍及代码示例

在网页设计和开发中,元素的对齐是布局中一个非常重要的方面。CSS 提供了多种方法来对齐页面上的元素,以确保内容按照预期的方式排列。本文将介绍几种常见的 CSS 对齐方式,并附上代码示例。

2024-12-04 13:17:53 1396

转载 JavaScript 变量

变量是用于存储信息的"容器"。

2024-12-03 14:08:37 65

原创 使用 Python 的beautifulsoup4和正则表达式获取页面中的所有图片链接

在 Web 开发和数据抓取中,经常需要从 HTML 页面中提取特定的信息,如图片链接。Python 提供了强大的工具来处理这类任务。本文将介绍如何使用 Python 的。如果需要更加精确地筛选图片链接(例如只获取特定格式或特定路径下的图片),可以使用正则表达式进行过滤。以下是完整的代码示例,包括获取网页内容、解析 HTML 并提取图片链接,以及使用正则表达式进行筛选。首先,确保安装了所需的库。库发送 HTTP 请求并获取网页的内容。解析 HTML 内容,并提取所有的。库来获取网页中所有的图片链接。

2024-12-03 09:40:57 528

原创 python使用正则表达式提取网页中的图片链接

接下来,我们将编写一个函数,使用正则表达式来匹配并提取符合条件的图片链接。以下是完整的代码示例,包括获取网页内容、使用正则表达式提取图片链接。首先,我们需要从目标网页获取 HTML 内容。pattern可以依据具体的需求来修改。

2024-12-03 09:15:28 475

原创 使用 Python 实现二叉树的层次遍历

层次遍历是一种逐层访问二叉树节点的遍历方法。与深度优先搜索(DFS)不同,层次遍历会先访问同一层的所有节点,然后再进入下一层。这种遍历方法通常使用队列(Queue)来实现,因为队列遵循先进先出(FIFO)的原则,非常适合按层次处理节点。在 Python 中,我们可以使用类(class)来定义二叉树的节点。每个节点包含一个值(val),以及指向左子节点和右子节点的指针(left 和 right)。示例代码。

2024-12-02 10:38:22 1332

原创 使用 Python 判断回文(不区分大小写,标点符号)

回文(Palindrome)是指一个字符串从前往后读和从后往前读是一样的。本文将介绍几种使用 Python 判断回文的方法,并提供相应的代码示例。虽然不是最高效的,但递归方法提供了一种优雅的方式来解决问题。我们可以递归地检查字符串的第一个和最后一个字符是否相同,然后对子字符串重复这一过程。双指针法是最直观的方法之一。我们可以使用两个指针,一个从字符串的开头开始,另一个从结尾开始,逐步向中间移动并比较对应的字符。如果需要更严格的处理,比如忽略大小写和非字母数字字符,可以使用正则表达式来清理输入字符串。

2024-12-02 10:31:15 1280

原创 python中 pip 的使用方法详解

命令来安装 Python 包。可以直接从 PyPI(Python Package Index)安装,也可以从本地文件或特定 URL 安装。是 Python 的默认包管理工具,随 Python 3.x 版本一同安装。命令可以在 PyPI 上搜索特定的包。命令查看某个已安装包的详细信息,如版本、作者、摘要等。命令列出当前环境中已安装的所有包及其版本。命令来卸载不再需要的 Python 包。有时需要安装特定版本的包,可以使用等号 (可以在一条命令中安装多个包,用空格分隔。文件安装指定版本的依赖包。

2024-12-01 22:26:41 1357

原创 Python 元组详解

元组可以用圆括号()来定义,元素之间用逗号分隔。即使只有一个元素,也需要在元素后面加上逗号来表示这是一个元组。示例代码# 定义空元组# 定义单元素元组# 定义多元素元组print(empty_tuple) # 输出: ()print(single_element_tuple) # 输出: (42,)print(multi_element_tuple) # 输出: (1, 2, 3, 'four', 'five')

2024-12-01 22:24:02 667

原创 Python 中的集合(Set)介绍

集合(set)是 Python 中的一种无序、不重复的数据结构。集合非常适合用于去除重复元素、进行集合运算等操作。本文将详细介绍集合的基本概念、常见操作以及一些实用的代码示例。

2024-11-30 07:45:00 239

阿根廷雅典人书店图书价格数据集,书籍数据, 适用于数据分析、机器学习

从阿根廷最著名、最具文化象征意义的书店之一 —— El Ateneo Grand Splendid(雅典人书店)官网 中提取了其在线商城上的书籍信息 这个数据集非常适合用于: 图书定价分析 文化与出版市场研究 网络爬虫实践教学 图书推荐系统构建 电商数据分析与可视化 雅典人书店背景介绍 属性 内容 名称 El Ateneo Grand Splendid 地点 阿根廷布宜诺斯艾利斯雷科莱塔区(Recoleta, Buenos Aires) 历史 前身为1912年开业的 Grand Splendid 剧院 转型时间 2000年代初转型为书店 设计师 Grupo Ilhsa 出版社改造设计 国际认可 2008年:《卫报》评为世界第二美书店 2019年:《国家地理》评为世界最美书店

2025-05-28

顶级咖啡评分数据集,包含每款咖啡的关键属性与感官评分,包含咖啡名称、烘焙商、烘焙程度、原产国,适用于数据分析、机器学习

该顶级咖啡评分数据集是从 CoffeeReview.com 网站爬取并清洗整理的高评分咖啡产品信息,包含每款咖啡的关键属性与感官评分。 本数据集经过清洗处理,包括分离 Agtron 分数、计算每盎司价格,并对字段进行标准化,便于后续分析。 此数据集非常适合: 咖啡推荐系统开发 消费品定价建模 风味特征分析 数据可视化项目(如风味轮图、产地分布热力图) NLP 文本挖掘(如描述文本情感分析) 字段说明(Columns Description) 字段名 描述 Coffee Name 咖啡名称(品牌+产地+批次等) Roaster Location 烘焙商所在地(城市或国家) Origin and Country of Coffee 咖啡豆原产国及产区(如 Colombia Huila、Ethiopia Yirgacheffe) Roast Level 烘焙程度(Light, Medium, Dark 等) Agtron Ground Score 地面光谱色值分数(表示烘焙深浅) Agtron Roast Score 整体烘焙得分(用于评估烘焙一致性) Estimated Price 总价(美元) Price per Ounce (USD) 每盎司价格(美元),用于比较不同容量产品的单位价值

2025-05-28

全球街头美食数据集,世界美食数据集,包含菜名、所属国家、食材、描述、烹饪方式、价格,适用于数据分析、机器学习

该全球街头美食数据集是一个精心整理的、包含 4,500 道街头美食菜肴的数据集合,旨在展现世界各地街头饮食文化的多样性与丰富性。 初始版本包含 4,000 道菜肴,现新增了来自 非洲、日本和中东 地区的 500 道特色街头小吃 字段说明(Columns Description) 字段名 描述 Dish Name 菜名(本地名称 + 英文翻译) Country 所属国家 Region/City 所属地区或城市(如 Tokyo, Marrakech, Lagos) Ingredients 主要食材(逗号分隔列表) Description 菜品描述(历史背景、风味特点等) Cooking Method 烹饪方式(油炸、烧烤、蒸煮、炖煮等) Typical Price (USD) 典型价格(美元) Vegetarian Indicator 是否素食(Yes / No / Optional)

2025-05-28

全球互联网普及与数字增长分析数据集,记录了 10 个国家从 2010 年至今的每日互联网普及情况和数字化发展指标,适用于数据分析、机器学习

本数据集是一个高度仿真的合成时序数据集,记录了 10 个国家(美国、印度、巴西、尼日利亚、印尼、埃塞俄比亚、中国、肯尼亚、德国、南非)从 2010 年至今的每日互联网普及情况和数字化发展指标。 数据基于 Sigmoid 增长模型生成,并引入了真实的外部冲击模拟(如新冠疫情、4G/5G 推出等),使其具有高度现实性与可预测性。 此数据集非常适合用于: 时间序列建模与预测 因果推断(Causal Inference) 数字化转型分析 聚类分析(国家分群) 地理空间可视化 数据科学竞赛 / 案例研究 字段说明(Columns Description) 时间维度 字段名 类型 描述 Date date 记录日期(从 2010年1月1日 至 当前时间) Country string 国家名称 Region string 区域(Urban / Rural) 核心指标字段 字段名 类型 单位 描述 Internet Penetration (%) float 百分比 上网人口占总人口比例 Broadband Speed (Mbps) float Mbps 宽带平均速度 Mobile Data Usage (GB/month) float GB 每人每月移动数据使用量 Digital Investment (M USD) float 百万美元 国家/企业在数字经济的投资总额 Digital Literacy (%) float 百分比 数字技能掌握率 5G Rollout Status boolean Yes/No 是否已部署 5G 网络 Sentiment Score float -1 ~ +1 社交媒体或调查中对数字服务的情感倾向得分 Education Level (%) float 百分比 受过中等及以上教育的人口比例 GDP per Capita (USD)

2025-05-28

压力与睡眠模式数据集,记录学生的压力水平与睡眠模式,适用于数据分析、机器学习

该数据集由印度南印度泰米尔纳德邦某技术大学(Technical University)的研究人员收集,记录了该校学生的压力水平与睡眠模式。数据基于学生在不同情境下的自述和行为特征,旨在研究: “大学生在学业、生活等多重压力下,其睡眠质量和心理状态的变化规律。” 这个数据集非常适合用于以下方向: 睡眠障碍分析 压力识别建模 学生心理健康监测 教育心理学研究 机器学习分类/回归任务

2025-05-28

在线购物者购买意图预测数据集,用于二分类预测建模的电子商务数据集,包含 12,330 条独立网页会话记录,适用于机器学习训练,数据分析

“Online Shoppers Purchasing Intention” 是一个广泛用于二分类预测建模的电子商务数据集,包含 12,330 条独立网页会话记录,数据采集周期为一年。每条记录代表一个唯一访客的一次访问行为,以避免用户个性化或营销活动带来的偏差。 字段名 描述 Administrative 行政页面浏览次数(如“关于我们”、“联系客服”) Administrative_Duration 行政页面总停留时间(秒) Informational 信息类页面浏览次数(如“帮助中心”、“FAQ”) Informational_Duration 信息类页面总停留时间(秒) ProductRelated 商品相关页面浏览次数(如产品详情页) ProductRelated_Duration 商品相关页面总停留时间(秒) BounceRates 跳出率(当前页面即离开网站的比例) ExitRates 退出率(当前页面为本次访问最后一页的比例) PageValues 页面价值(访问后促成购买的平均金额) SpecialDay 特殊节日临近度(归一化值 0–1,如情人节、母亲节等) 类别型特征(Categorical Features) 字段名 取值范围 描述 Month Aug – Sep(共8个月份) 访问发生的月份 OperatingSystems 1–8 操作系统代码(如 Windows、Mac、Linux) Browser 1–13 浏览器代码(如 Chrome、Firefox、Safari) Region 1–9 地理区域代码 TrafficType 1–20 流量来源类型代码(如搜索引擎、直接访问、社交媒体) VisitorType New_Visitor, Returning_Visitor, Other 是否为回访用户 Weekend True / Fal

2025-05-28

在线书店数据集,书本信息数据集,适用于数据分析、机器学习

该在线书店数据集包含 1,000 本图书的信息 字段说明(Columns Description) 字段名 类型 描述 Book Title string 图书标题 Author string 作者姓名 Price (USD) float 书籍售价(美元) Category string 所属分类(小说类、科技、历史、心理学等) Rating float 用户评分(1–5 分) Number of Ratings int 获得的评价数量 Availability boolean / string 是否有库存(In Stock / Out of Stock) Product Page URL string 商品页面链接(用于回溯原始网页) Publication Year int 出版年份 Publisher string 出版社名称(可选)

2025-05-28

肺癌数据分析集数据集,包含 800,000 名确诊肺癌患者的完整信息,包含 16 个结构化字段:年龄、吸烟状况、吸烟年限、癌症类型、肿瘤大小等,适用于数据分析、机器学习

本肺癌数据集包含 800,000 名确诊肺癌患者的完整信息,旨在支持研究人员、数据科学家和医疗专业人员:该数据集共包含 16 个结构化字段,涵盖患者基本信息、诊断记录、治疗方式、预后结果等关键维度。 字段说明(Columns Description) 字段名 类型 描述 Patient_ID string / int 匿名化患者编号 Age int 患者年龄 Gender string 性别(Male / Female / Other) Smoking_Status string 吸烟状况(Never Smoked / Former Smoker / Current Smoker) Pack_Years float 吸烟年限(以“包年”为单位) Family_History boolean 是否有肺癌家族史(Yes / No) Diagnosis_Date date 首次确诊日期 Cancer_Type string 癌症类型(非小细胞 NSCLC / 小细胞 SCLC / 其他) Stage_At_Diagnosis string 诊断时癌症分期(I-IV 或 Early/Late) Tumor_Size_cm float 肿瘤大小(厘米) Treatment_Type string 治疗方式(Surgery / Chemotherapy / Radiation / Targeted Therapy / Palliative Care) Treatment_Start_Date date 治疗开始日期 Follow_Up_Time_months float 随访时间(月) Survival_Status boolean 是否存活(Alive / Deceased) Death_Date date 死亡日期(如适用) Mortality_Risk_Score flo

2025-05-28

牛油果成熟度分类数据集,可用于训练机器学习模型自动识别水果成熟状态,适用于机器学习预测

本数据集是一个合成构建的牛油果成熟度分类数据集,旨在通过牛油果的物理特征(如硬度、颜色、声音等)预测其成熟阶段(ripeness stage)。该数据集模拟了 Hass 品种牛油果在不同成熟阶段的测量值。 Hass 牛油果是全球最广泛商业种植的牛油果品种,以其粗糙的深绿色至黑色表皮和奶油状果肉著称。 此数据集适用于多类别分类任务,可用于训练机器学习模型自动识别水果成熟状态,支持农业自动化、智能仓储、零售质量检测等场景。 数据字段说明 输入特征(Features) 字段名 描述 测量方法 单位/取值范围 生物学意义 / 模式 firmness 抗穿透性(硬度) Penetrometer(穿刺仪) 10 - 100 N <br>- 硬:80-100N(未熟)<br>- 成熟:10-20N(软) hue 色调(颜色波长) Camera + HSB 转换 0° - 360° <br>- 绿色:60-120°<br>- 紫色:270-330°<br>- 黑色:0-30°<br>随着成熟从绿色 → 紫色 → 黑色 saturation 颜色饱和度 Camera + HSB 转换 0% - 100% 随着成熟度增加而下降 brightness 颜色亮度 Camera + HSB 转换 0% - 100% 成熟时变暗 color_category 视觉颜色类别 图像分析 <br>- Dark green<br>- Green<br>- Purple<br>- Black <br>- Dark green → 未熟<br>- Purple → 中期成熟<br>- Black → 过熟 sound_db 敲击声强度(分贝) 麦克风(敲击测试) 30 - 80 dB <br>- 高频响亮(70-80dB)= 硬果<br>- 低频沉闷(30-40dB)

2025-05-28

社交媒体与生产力关系数据集,30000 名不同职业、生活习惯和社交习惯人群的日常数字行为,社交媒体使用、屏幕时间、通知频率等数字行为如何影响个体的工作效率、压力水平和幸福感,适用于数据分析、机器学习

该社交媒体与生产力数据集模拟了 30,000 名不同职业、生活习惯和社交习惯人群的日常数字行为,旨在研究: “社交媒体使用、屏幕时间、通知频率等数字行为如何影响个体的工作效率、压力水平和幸福感?” 这个数据集设计用于真实世界的机器学习工作流,包含缺失值、噪声和异常值,非常适合练习数据清洗、特征工程和建模。 数据字段说明(共 19 列) 字段名 类型 描述 age int 年龄(18–65 岁) gender string 性别:Male / Female / Other job_type string 职业类型:IT、Education、Student、Freelance 等 daily_social_media_time float 每日平均使用社交媒体时长(小时) social_platform_preference string 最常使用的社交平台:Instagram、TikTok、Telegram、Facebook、Twitter number_of_notifications int 每日收到的通知数量(手机/社交媒体) work_hours_per_day float 每日平均工作时长(小时) perceived_productivity_score float 自评生产力评分(0–10 分) actual_productivity_score float 模拟的真实生产力评分(0–10 分) stress_level float 当前压力等级(1–10 分) sleep_hours float 每晚平均睡眠时间(小时) screen_time_before_sleep float 睡前屏幕使用时间(小时) breaks_during_work int 工作期间休息次数 uses_focus_apps boolean 是否使用专注类 App(True

2025-05-22

航空市场票价预测数据集,包含航空公司报告的票价和乘客流量,记录了按航线划分的航班数量、座位数、乘客人数等运营数据,适用于数据分析、机器学习

该航空市场票价预测数据集由美国交通部下属的运输统计局(Bureau of Transportation Statistics, BTS)提供的公开数据构建而来,结合并处理了两个主要来源的数据: DB1B 数据集:包含航空公司报告的票价和乘客流量信息 T-100 数据集:记录了按航线划分的航班数量、座位数、乘客人数等运营数据 此外,该数据集还加入了多个解释变量,用于帮助理解不同市场之间票价差异的原因,例如: 市场竞争强度 航线迂回系数(Circuity) 出发地/目的地是否包含多个机场 数据结构概览 属性 描述 样本总数 1,581,278 条 字段数量 26 列 字段说明(Columns Description) 市场与航线相关 字段名 描述 MktCoupons 市场优惠券编号(标识特定航线与承运人组合) OriginCityMarketID 出发城市市场唯一ID DestCityMarketID 目的地城市市场唯一ID OriginAirportID 出发机场唯一ID DestAirportID 目的地机场唯一ID ODPairID 出发地-目的地对唯一ID(Origin-Destination Pair ID) 航班与距离信息 字段名 描述 NonStopMiles 非经停航段飞行里程(英里) RoundTrip 是否为往返航班(1=是,0=否) Non_Stop 是否为直飞航班(1=是,0=否) MktMilesFlown 市场总飞行里程(Pax × Miles) 航空公司与竞争信息 字段名 描述 Carrier 承运人代码(航空公司) CarrierPax 该承运人在该航线上服务的乘客数量 Market_share 该承运人在该市场中的市场份额 Market_HHI 市场赫芬达尔-赫希曼指数(衡量市场竞争集中度) LCC_Comp

2025-05-22

多类别情感分析数据集(240K+ 英文评论),大量真实世界文本数据集,适用于自然语言处理(NLP)建模训练

数据集概述 该多类别情感分析数据集包含超过 241,000 条英文用户评论,是从多个平台和来源收集的真实世界文本数据。每条评论都标注了情感类别: 0 — 负面(Negative) 1 — 中性(Neutral) 2 — 正面(Positive) 这些数据已经过预处理:统一小写、去除标点、URL、数字和停用词,可直接用于自然语言处理(NLP)建模流程。 数据字段说明 字段名 类型 描述 Comment string 用户生成的文本内容 Sentiment int 情感标签:0=Negative,1=Neutral,2=Positive

2025-05-22

基于蜂巢与天气数据预测蜜蜂健康状况数据集,包含:蜂群健康评估、蜂巢重量变化、气象数据,适合用于生态建模、时间序列分析、机器学习预测模型等

该数据集旨在帮助研究人员和养蜂人监测并预测蜜蜂种群的健康状况。数据来源于美国北卡罗来纳州和犹他州的多个蜂巢,结合了以下三类关键信息: 蜂群健康评估(HCC协议) 蜂巢重量变化(Hive Scale Data) 气象数据(Weather Data) 这套数据非常适合用于生态建模、时间序列分析、机器学习预测模型等任务。 数据来源与背景 健康评估标准:Healthy Colony Checklist (HCC) 根据 Cazier 等人 2018a 和 2018b 的研究,使用标准化的“健康蜂群检查表”对每个蜂箱进行定期检查。这包括: 工蜂数量 蜂王存在与否 幼虫/蛹的比例 食物储存情况(花蜜、花粉) 是否有疾病或寄生虫迹象(如瓦螨) 每项指标都会被记录,并最终转化为一个综合的健康评分。

2025-05-22

眼癌患者医疗数据集,包括:葡萄膜黑色素瘤、视网膜母细胞瘤、眼部淋巴瘤,包含了 5000 名确诊为不同类型眼癌的患者的详细医学与人口统计信息,适用于机器学习建模、统计分析、生物医学研究

数据集概述 该眼癌患者数据集包含了 5,000 名确诊为不同类型眼癌的患者的详细医学与人口统计信息,适用于机器学习建模、统计分析、生物医学研究和临床决策支持系统的开发。 它涵盖了多种类型的眼癌,包括: 葡萄膜黑色素瘤(Uveal Melanoma) 视网膜母细胞瘤(Retinoblastoma) 眼部淋巴瘤(Ocular Lymphoma) 数据字段说明 1. 人口统计信息(Demographics) 字段名 描述 patient_id 患者唯一标识符 age 年龄(1–90岁) gender 性别(男 / 女) country 所在国家 2. 临床信息(Clinical Information) 字段名 描述 cancer_type 癌症类型(Melanoma, Retinoblastoma等) laterality 发病侧别:左眼 / 右眼 / 双眼 stage 诊断时的癌症分期(I–IV) 3. 诊断与治疗信息(Diagnosis & Treatment) 字段名 描述 diagnosis_date 诊断日期 treatment_type 治疗方式(手术、放疗、化疗等) radiation_dose_gy 放疗剂量(单位:Gy) chemo_sessions 化疗次数 treatment_intensity 治疗强度分类(低、中、高) 4. 治疗结果(Outcomes) 字段名 描述 survival_months 生存时间(月) outcome_status 结局状态(In Remission, Active, Deceased) 5. 遗传与家族史(Genetics & Family History) 字段名 描述 genetic_marker 遗传标记(如 BRAF 突变、RB1 突变等) family_history 是否有眼癌家族史 潜在用途

2025-05-22

喜马拉雅登山探险数据集,珠穆朗玛峰攀登数据,珠峰攀登数据,记录了大量关于攀登喜马拉雅山脉高峰的历史信息,包含三大类数据:探险活动信息、死亡事件、山峰信息,适用于数据分析

数据集简介 该喜马拉雅登山探险数据集是一个结构化、多表关联的数据库,记录了大量关于攀登喜马拉雅山脉高峰的历史信息。它包含多个维度的数据,涵盖了探险活动(Expeditions)、死亡事件(Deaths) 和 山峰信息(Peaks),非常适合用于历史趋势分析、安全研究、团队表现建模以及机器学习预测任务。 数据集组成与字段说明 1. Peaks 表:山峰基本信息 字段名 描述 peak_id 山峰唯一标识符 peak_name 山峰名称 host_countries 可从哪些国家发起攀登 first_asc_yr 首次登顶年份 2. Expeditions 表:登山探险详细记录 这是核心表,记录了每次探险的全方位信息: 基本信息 字段名 描述 peak_id 所攀登山峰的ID peak_name 山峰名称 nationality 探险队主要国籍 year 探险年份 season 季节(春季、夏季、秋季、冬季) host_cntr 登山起始国 other_cntrs 其他参与国家 sponsor 赞助商 leaders 探险队长/领导名单 路线与结果 字段名 描述 rte_1_name, rte_2_name 使用的路线名称(最多4条) team_asc_1, team_asc_2 每条路线的团队登顶次数 is_disputed 是否存在登顶争议 is_claim 未证实的登顶声明 is_commercial_rte 是否为商业路线 is_standard_rte 是否为标准路线(如南坡、北坡等) 时间与行程 字段名 描述 bc_arrived 到达大本营日期 bc_left 离开大本营日期 total_days 探险总天数 summit_day 登顶日(相对于出发后的第几天) time 登顶时间 max_elev_reached 实际到达的最大海拔高

2025-05-21

二手车销售数据集,包含了20,000辆不同品牌、型号和状态的待售汽车的信息,涵盖(品牌、型号、年份、价格、颜色、车况等)适用于数据分析、机器学习

数据集描述 此数据集包含了20,000辆不同品牌、型号和状态的待售汽车的信息。它提供了详尽的细节,包括但不限于: 汽车品牌(Make) 型号(Model) 年份(Year) 里程数(Mileage) 燃油类型(Fuel Type) 价格(Price) 颜色(Color) 变速箱类型(Transmission Type) 车况(Condition) 此外,数据集中还包含了每辆车的选项/特性信息(如GPS导航、真皮座椅、天窗等)以及是否曾经发生过事故。 数据集价值与应用 价格预测 利用车辆的各种特征来预测其售价,这对于买家了解市场行情和卖家制定合理的价格策略都非常重要。 趋势分析 基于年份、里程数和品牌等因素探索汽车销售的趋势,有助于理解市场的偏好变化和发展方向。 特征重要性分析 研究像燃油类型、汽车品牌及配置选项等不同特性对价格的重要性,帮助企业或个人更好地理解哪些因素最能影响一辆车的价值。

2025-05-21

任意地点工作薪资洞察数据集,工作薪资数据集,包含远程工作、行业的薪资、经验和雇佣类型,适用于数据分析、机器学习

数据集概述 此数据集探讨了远程工作的机会如何与各行业的薪资、经验和雇佣类型相交。它包含了500个假设员工的干净、结构化的记录,这些员工处于远程或混合工作角色中。该数据集非常适合用于薪资建模、人力资源分析或基于行业的薪资洞察。 数据点 公司:个体受雇组织的名称。 职位名称:员工的职位(例如软件工程师、产品经理)。 行业:就业领域(如技术、金融、医疗保健)。 地点:工作的城市和/或国家或总部所在地。 雇佣类型:全职、兼职、合同工或实习生。 经验水平:工作资历:初级、中级、高级或领导层。 远程灵活性:表明工作是远程、混合还是现场办公。 年薪:税前年度总薪资。 货币:支付薪资的货币(如美元、欧元、印度卢比)。 工作经验年限:员工拥有的专业经验总年数。 潜在使用案例 预测性建模 根据角色、经验和地点预测薪资,帮助企业更好地理解市场价值并制定合理的薪酬策略。 薪资基准 按行业或雇佣类型进行薪资基准测试,帮助公司了解其提供的薪资是否具有竞争力,并据此调整薪资结构以吸引和保留人才。

2025-05-21

香烟与酒精成瘾数据集,包含了针对3,000个样本个体的合成但真实的香烟和酒精成瘾相关数据,适用于数据分析、机器学习

本数据集包含了针对3,000个样本个体的合成但真实的香烟和酒精成瘾相关数据。这些个体均为香烟和酒精的使用者,并且显示出不同程度的成瘾行为。该数据集旨在支持机器学习模型开发、数据分析工作、公共卫生研究以及教育用途。 数据内容 人口统计信息:年龄、性别、职业等基本信息。 行为健康统计数据:如心理健康状况、压力水平等。 生活方式指标:饮食习惯、运动频率、睡眠质量等。 成瘾模式:吸烟频率、饮酒量、开始使用年龄、戒断尝试次数等详细信息。 此数据集非常适合用于以下场景: 机器学习模型开发:可用于构建预测模型,比如预测哪些人更容易发展为重度成瘾者,或是识别出有效的戒断策略。 数据分析:分析不同因素(如年龄、性别、生活方式选择)对成瘾程度的影响。 公共卫生研究:帮助研究人员理解成瘾趋势及其对公共健康的潜在影响,从而制定更加有效的干预措施。 教育目的:作为教学材料,帮助学生学习如何处理和分析复杂的社会科学数据集。 数据字段示例 字段名 类型 描述 individual_id int 唯一个体标识符 age int 年龄 gender str 性别 occupation str 职业 smoking_frequency int 每日吸烟数量 alcohol_consumption float 每周平均饮酒量(单位:升) start_age int 开始使用香烟/酒精的年龄 withdrawal_attempts int 戒断尝试次数 diet_quality str 饮食质量评估 exercise_frequency str 运动频率 sleep_quality str 睡眠质量评估

2025-05-21

印度洋冬季气旋频率数据集,记录了1891年至2019年期间,北印度洋每年冬季发生的所有气旋扰动事件的频率统计,包括:气旋性低压(Depressions)、气旋风暴(Cyclonic Storms)

数据集概述 本数据集记录了1891年至2019年期间,北印度洋区域(包括孟加拉湾 BOB、阿拉伯海 AS 以及登陆系统)在每年冬季(1月和2月)发生的所有气旋扰动事件的频率统计。这些扰动包括: 气旋性低压(Depressions) 气旋风暴(Cyclonic Storms) 每条记录分别提供了: 1月气旋数 2月气旋数 1月至2月总气旋数 该数据集为研究长期气旋活动趋势、评估季节性风险模式、以及分析气候变化对热带气旋的影响提供了宝贵的历史依据。 地理区域划分 区域名称 描述 Bay of Bengal (BOB) 孟加拉湾,位于印度东部海域 Arabian Sea (AS) 阿拉伯海,位于印度西部海域 Landfalling Systems 登陆系统,即影响南亚沿海国家(如印度、孟加拉国、斯里兰卡等)的气旋

2025-05-19

增强版披萨销售数据集,提供了来自一家披萨店的丰富细节,适用于数据分析,机器学习

这份增强版的披萨销售数据集覆盖了从2024年至2025年的时间跨度,提供了来自一家披萨店的丰富细节。无论你是数据科学新手、正在从事机器学习项目的大学生,还是希望测试时间序列预测和仪表板构建的经验丰富的分析师,这个数据集都非常适合你。 数据内容 该数据集包括但不限于以下信息: 订单日期与时间:精确到分钟的订单记录。 披萨名称及分类:如素食、非素食、经典款、高级定制等类别。 尺寸:小号、中号、大号、特大号。 价格:不同种类和尺寸的价格信息。 订购数量:每笔交易中的披萨数量。 顾客偏好与趋势:反映顾客喜好变化的数据。 数据以Excel格式整理,便于使用Python(Pandas)、Power BI、Excel或Tableau等工具进行处理。 为什么选择此数据集? 理想的应用场景包括: 销售分析与报告(Sales Analysis & Reporting):深入理解销售模式,识别高峰时段和热销产品。 机器学习模型(Machine Learning Models):用于需求预测、推荐系统开发等。 时间序列预测(Time Series Forecasting):基于历史数据预测未来销售趋势。 数据可视化项目(Data Visualization Projects):创建交互式仪表板展示关键业务指标。 顾客行为分析(Customer Behavior Analysis):探索顾客购买习惯和偏好。 购物篮分析(Market Basket Analysis):发现哪些商品经常一起被购买。 库存管理模拟(Inventory Management Simulations):优化库存水平以减少浪费并提高客户满意度。

2025-05-19

贷款申请与交易行为欺诈检测数据集,包含两文件贷款申请信息,用户交易记录,适用于机器学习训练

双文件联动的金融欺诈检测数据集,包含以下两个核心文件: loan_applications.csv:贷款申请信息 transactions.csv:用户交易记录 两个文件通过 customer_id 字段关联,支持跨维度分析用户的贷款申请特征与交易行为模式。 包含贷款申请与交易行为两大数据源 每个文件均包含 fraud_flag 标签字段 支持构建多任务、时序、图谱类欺诈识别系统 非常适合金融风控、反欺诈建模与特征工程 该数据集非常适合用于: 构建金融欺诈分类模型(监督学习) 分析异常用户行为(无监督/半监督学习) 多表联合建模(贷款 + 交易) 特征工程与风险画像构建 可视化可疑行为路径 教学项目、竞赛任务或企业风控系统开发 字段说明(Features & Columns) 文件1: loan_applications.csv 字段名 类型 描述 application_id string 贷款申请唯一编号 customer_id string 客户唯一标识符(连接交易数据) age integer 年龄 gender string 性别 employment_status string 就业状态(如 employed, self-employed, unemployed) income_annual float 年收入(美元) credit_score integer 信用评分(300–850) loan_amount_requested float 申请贷款金额 loan_term_days integer 贷款期限(天数) purpose string 借款用途:<br>Personal, Home Improvement, Debt Consolidation, Education 等 residence_type string 居住类型

2025-06-11

二手车价格预测数据集,包含 10,000 条二手车交易记录,涵盖行驶里程、发动机排量、车龄、燃油类型、变速箱类型、品牌型号等,适用于数据分析、机器学习

本 Used Car Price Estimation Dataset 包含 10,000 条高度仿真的二手车交易记录,每条记录包含影响车辆残值的关键属性,如:行驶里程、发动机排量、车龄、燃油类型、变速箱类型、品牌型号等。 合成生成但符合真实市场规律 适用于回归任务(预测售价) 支持特征工程、可视化、模型训练与部署 非常适合机器学习入门与进阶项目 该数据集非常适合用于: 构建二手车价格预测模型(回归任务) 特征工程练习(创建车龄、油耗评分等新变量) 探索性数据分析(EDA)与可视化 模型对比(线性回归 vs 随机森林 vs XGBoost) 构建交互式汽车定价仪表板(Streamlit / Dash) 字段说明(Features & Columns) 字段名 类型 描述 price_usd float 车辆售价(美元),目标变量 brand string 品牌(如 Toyota, BMW, Ford 等) model string 车型(如 Camry, 3 Series, F-150) year integer 出厂年份(如 2018, 2020) mileage_km float 行驶里程(公里) engine_size_l float 发动机排量(升) fuel_type string 燃油类型:<br>Petrol, Diesel, Hybrid, Electric transmission string 变速箱类型:<br>Automatic, Manual, CVT num_owners integer 之前拥有者数量 condition string 车况评级:<br>Excellent, Good, Fair, Poor color string 外观颜色(如 Black, White, Silver) drive_type st

2025-06-11

印度空气质量与健康风险数据集,涵盖 PM2.5、PM10、NO₂、CO、SO₂、O₃ 等污染物浓度、气象参数(温度、湿度、风速、降雨等)、交通和工业活动信息,适用于数据分析,机器学习

本Indian AQI Trends and Health Risk Dataset 提供了 2019 至 2024 年间印度主要城市的空气质量与健康影响指标,涵盖 PM2.5、PM10、NO₂、CO、SO₂、O₃ 等污染物浓度、气象参数(温度、湿度、风速、降雨等)、交通和工业活动信息,并提供一个综合的健康风险评分。 包括 AQI、污染物、气象、城市活动等多维指标 覆盖印度多个重点城市(如德里、孟买、班加罗尔等) 可用于空气质量建模、健康风险评估、政策模拟 适用于时间序列预测、回归分析、聚类或分类任务 该数据集非常适合用于: 空气污染趋势分析 健康风险评估建模 污染源识别与归因分析 公共卫生政策研究 机器学习建模(AQI 预测、健康评分预测) 可视化与决策支持系统构建 字段说明(Features & Columns) 字段名 类型 描述 City string 城市名称:<br>Delhi, Mumbai, Bangalore, Chennai, Kolkata, Hyderabad, 等 Date date (YYYY-MM-DD) 记录日期 AQI integer 空气质量指数(Air Quality Index) PM2.5 float 细颗粒物浓度(μg/m³) PM10 float 可吸入颗粒物浓度(μg/m³) NO₂ float 二氧化氮浓度(ppb) CO float 一氧化碳浓度(ppm) SO₂ float 二氧化硫浓度(ppb) O₃ float 臭氧浓度(ppb) Temperature (°C) float 当日平均气温(摄氏度) Humidity (%) float 相对湿度百分比 Wind Speed (km/h) float 风速(公里/小时) Rainfall (mm) float 日降雨量(毫米) Pre

2025-06-11

全球主要城市实时天气数据集,包含 10 个全球主要城市的实时天气观测数据,涵盖温度、体感温度、湿度、气压、风速和天气状态描述等关键气象指标,适用于数据分析、机器学习

City Weather Dataset 包含 10 个全球主要城市的实时天气观测数据,涵盖温度、体感温度、湿度、气压、风速和天气状态描述等关键气象指标。 来自真实世界天气观测系统 包含 10 个代表性城市(如纽约、伦敦、东京等) 支持时间序列分析、天气分类与可视化 适合初学者进行数据分析、可视化和机器学习入门练习 该数据集非常适合用于: 天气趋势分析 城市间气候对比研究 构建天气预测模型(回归或分类) 数据可视化项目(热力图、折线图、风速玫瑰图等) 初学者的机器学习教学与实践任务 字段说明(Features & Columns) 字段名 类型 描述 City string 城市名称:<br>New York, London, Tokyo, Paris, Beijing, Mumbai, Sydney, Moscow, Cairo, Nairobi Temperature (°C) float 当前气温(摄氏度) Feels Like (°C) float 体感温度(受湿度和风速影响) Humidity (%) integer 相对湿度百分比(0–100) Pressure (hPa) integer 大气压强(百帕) Weather string 天气状况描述:<br>Clear, Clouds, Rain, Haze, Snow, Fog, Thunderstorm 等 Wind Speed (m/s) float 风速(米每秒)

2025-06-10

2025 年 QS 世界大学排名数据集(含全球 1500+ 大学、多维指标与历年对比),包含2025 与 2024 年双年排名数据,适用于数据分析

本QS World University Rankings 2025 Dataset 提供了对 全球超过 1,500 所大学的详细评估信息,涵盖来自 105 个教育体系的数据。该数据集不仅包含 2025 年最新排名,还提供 2024 年历史排名及各项评分指标,适合用于高校比较、教育趋势分析、学术研究影响力建模等。 包含 2025 与 2024 年双年排名数据 涵盖教学、科研、国际化、就业能力等多维度指标 提供学校规模、性质、区域分类等结构化特征 支持趋势分析、聚类、预测与可视化 该数据集非常适合用于: 高校竞争力分析 教育质量建模 学术影响力评估 国际学生择校推荐系统 政策制定与高等教育投资决策 数据科学竞赛或教学项目 字段说明(Features & Columns) 字段名 类型 描述 RANK_2025 integer 2025 年 QS 全球大学综合排名位次 RANK_2024 integer 2024 年 QS 排名位次 Institution_Name string 大学/机构名称 Location string 所在国家 Region string 地理区域:<br>Europe, Asia, North America, South America, Africa, Oceania SIZE string 学校规模分类:<br>S (Small), M (Medium), L (Large), XL (Very Large) FOCUS string 学科覆盖范围:<br>Comprehensive, Focused RES. string 研究强度等级:<br>Very High, High, Moderate, Low STATUS string 办学性质:<br>Public, Private Academic_Repu

2025-06-10

智能设备、智能电器处理器数据集(含芯片制造商、架构、核心数、无线功能等),涵盖智能手机、智能手表、平板电脑、IoT 设备等,适用于数据分析、机器学习

包含现代智能设备中使用的主流处理器信息,涵盖智能手机、智能手表、平板电脑、IoT 设备等。数据来源于 Apple、Samsung、Qualcomm、MediaTek 等厂商的公开技术资料。 含处理器品牌、系列、型号、发布年份 提供架构、核心数量、指令集、位宽 支持接口与无线通信能力(Wi-Fi, Bluetooth, GPS) 适用于硬件分析、趋势研究、分类建模 该数据集非常适合用于: 移动芯片发展历史研究 处理器性能对比分析 构建芯片分类或预测模型 可视化芯片演进趋势 消费电子市场研究与产品规划 字段说明(Features & Columns) 字段名 类型 描述 Designer string 芯片设计厂商:<br>Apple, Samsung, Qualcomm, MediaTek, Intel, 等 Series & Type string 处理器系列与具体型号:<br>A15 Bionic, Exynos 2400, Snapdragon 8 Gen 3 Year Released integer 发布年份 Function string 功能定位:<br>Application Processor, SoC with Modem, AI Accelerator Width of Machine Word string 架构位宽:<br>32-bit, 64-bit Supported Instruction Set(s) string (comma-separated) 支持的指令集:<br>ARMv8, ARMv9, x86_64, RISC-V Number of processor core(s) integer 总核心数(如 8 核) Type of processor core(s) string 核心类型及组合:<b

2025-06-10

消费者购物趋势与行为数据集(含年龄、性别、品类偏好、支付方式、促销响应等),包含详细的客户画像和购买行为信息,适用于数据分析、机器学习

是一个高度仿真的消费者在线购物行为数据集,包含详细的客户画像和购买行为信息。 含客户基本信息:年龄、性别、职业、居住地类型 提供购物行为:商品类别偏好、平均消费金额、购买频率 包括支付方式、促销响应、会员等级、满意度评分 支持客户分群、推荐系统、流失预测、购买倾向建模 该数据集非常适合用于: 市场营销策略制定 用户画像与客户细分 推荐系统构建 流失预警模型开发 促销效果评估 数据科学教学与竞赛 字段说明(Features & Columns) 字段名 类型 描述 Customer ID UUID 唯一客户编号 Age integer 客户年龄 Gender string 性别:<br>Male, Female, Other Occupation string 职业:<br>Student, Engineer, Doctor, Teacher, Freelancer, Retired, 等 Location Type string 居住区域类型:<br>Urban, Suburban, Rural Preferred Category string 最常购买的商品类别:<br>Beauty, Clothing, Electronics, Home, Food, Accessories, 等 Average Purchase Value (USD) float 平均每次订单金额 Purchase Frequency string 购买频率:<br>High, Medium, Low Payment Method string 常用支付方式:<br>Credit Card, Debit Card, Cash on Delivery, Digital Wallet Promo Engagement boolean (True/False) 是否经常

2025-06-10

全球互联网普及与数字增长分析数据集,包含 10 个国家(美国、印度、巴西、尼日利亚、印尼、埃塞俄比亚、中国、肯尼亚、德国、南非)自 2010 年至 2025 年的每日合成互联网使用与数字化发展记录

本Global Internet Adoption & Digital Growth Dataset 包含 10 个国家(美国、印度、巴西、尼日利亚、印尼、埃塞俄比亚、中国、肯尼亚、德国、南非)自 2010 年至 2025 年的每日合成互联网使用与数字化发展记录。 模拟真实世界噪声(如疫情、4G/5G 部署)影响 含互联网渗透率、宽带速度、教育水平、GDP、移动数据使用等关键指标 支持时间序列建模、预测、因果推断和聚类分析 该数据集非常适合用于: 数字化转型研究 国家间互联网发展对比 疫情对数字经济的影响分析 5G 影响评估 可视化全球数字鸿沟 数据科学竞赛或项目练习 字段说明(Features & Columns) 字段名 类型 描述 Date date (YYYY-MM-DD) 记录日期 Country string 国家名称:<br>USA, India, Brazil, Nigeria, Indonesia, Ethiopia, China, Kenya, Germany, South Africa Internet Penetration (%) float (0.0–100.0) 互联网覆盖率(人口百分比) Broadband Speed (Mbps) float 宽带平均下载速度 GDP per Capita (USD) float 人均 GDP(美元) Education Level (%) float (0.0–100.0) 成人识字率或高等教育完成率 Mobile Data Usage (GB/month) float 人均每月移动数据使用量 Digital Investment (Million USD) float 年度数字基础设施投资金额 Digital Lit

2025-06-05

消费者零售购买行为数据集(含时间、性别、年龄、商品类别、销量与金额),适用于商品趋势研究、销售预测建模、数据分析

本Sales Dataset 包含 2023 年期间客户在零售场景下的完整交易记录,涵盖客户基本信息(性别、年龄)与交易详情(商品类别、数量、价格、总金额),适用于: 消费者行为分析 商品趋势研究 销售预测建模 客户画像构建 推荐系统开发 动态定价策略设计 包含日期、性别、年龄等客户特征 提供商品类别、购买数量、单价与总金额 支持多维度分组与聚合分析 该数据集适合用于商业智能分析、市场策略制定以及机器学习建模。 字段说明(Features & Columns) 字段名 类型 描述 Date date (YYYY-MM-DD) 交易发生日期 Gender string 客户性别:<br>Male, Female, Other Age integer 客户年龄(购买时) Product Category string 商品类别:<br>Beauty, Clothing, Electronics, Home, Food, Accessories, 等 Quantity integer 购买件数 Price per Unit float 单价(单位:货币) Total Amount float 总消费金额 = Quantity × Price per Unit

2025-06-05

工程专业学生学术与就业路径数据集,包含工程专业学生的完整学习与职业发展轨迹,涵盖 计算机科学、电子工程、机械工程等多个专业方向,适用于数据分析、机器学习

本Engineering Student Journey Dataset 包含工程专业学生的完整学习与职业发展轨迹,涵盖 计算机科学、电子工程、机械工程等多个专业方向。 包含 8 个学期的 GPA 记录 提供编程语言技能、俱乐部活动、实习经历 含就业状态、领域、薪资(CTC in LPA) 可用于预测建模、趋势分析、教育研究 该数据集适用于: 教育机构评估学生成绩与就业关联性 企业制定招聘策略 学生了解成功路径 数据科学家构建 CTC 预测或就业成功率模型 研究员分析不同专业方向的表现差异 字段说明(Features & Columns) 字段名 类型 描述 Student ID UUID 唯一学生编号 Name string (anonymized) 学生姓名(建议匿名化) Branch string 所属专业:<br>CSE, ECE, MECH, Civil, EEE, IT 等 Gender string 性别:<br>Male, Female, Other Age integer 年龄 Sem1 GPA – Sem8 GPA float (0–10) 每学期 GPA(共 8 个字段) Average GPA float (0–10) 全部学期平均 GPA Backlogs integer 当前挂科数量 Attendance (%) float (0–100) 出勤率 Technical Skills string (comma-separated) 技术技能:<br>Python, C++, Java, Machine Learning, Data Science, Web Development 等 Internships integer 实习经历数量 Clubs/Activities string (comma-separat

2025-06-05

NBA 球员的完整职业生涯统计数据,篮球运动员数据集,包含个人身体数据、场均得分、篮板、助攻、命中率等

包含从 1947 年至 2025 年共 5313 名 NBA 球员的完整职业生涯统计数据,数据来源于 Basketball-Reference。 涵盖球员姓名、出道年份、退役年份、位置、身高体重、学校背景 包括场均得分、篮板、助攻、命中率等基础统计 含进阶指标:PER、Win Shares、三分命中率、有效命中率 提供是否入选 Hall of Fame(名人堂)和是否现役状态 该数据集适用于: 篮球数据分析 球员表现预测建模 历史最佳球员研究 教学案例与可视化项目 特征工程实践(如总得分、总助攻等) 字段说明(Features & Columns) 字段名 类型 描述 Name string 球员姓名 Debut integer 首个赛季年份(如 2003 表示 2003–04 赛季) Final integer 最后一个赛季年份 Position string 场上位置(如 PG, SG, SF, PF, C) Height integer (inches) 身高(英寸) Weight integer (lbs) 体重(磅) Birthday date (YYYY-MM-DD) 出生日期 School string 曾就读大学或高中 HOF boolean (True/False) 是否入选 NBA Hall of Fame(篮球名人堂) Active boolean (True/False) 是否为现役球员 G integer 生涯出场次数(Games Played) PTS float 场均得分(Points Per Game) TRB float 场均篮板(Total Rebounds) AST float 场均助攻(Assists) FG% float (0.0–1.0) 投篮命中率(Field Goal Percentage)

2025-06-05

墨西哥卷饼外卖订单数据集,塔可Taco销售数据,适用于数据分析、机器学习

Taco Sales Dataset 是一个 高度仿真的合成数据集,包含从 2024 年 1 月 1 日至 2025 年 5 月 25 日期间生成的 1,000 条墨西哥卷饼外卖订单记录。数据覆盖多个美国城市、不同餐厅品牌,涵盖下单时间、配送时长、卷饼类型、价格、小费等关键信息。 该数据集适用于: 餐饮行业分析师研究消费者偏好 数据科学家构建配送时间或小费预测模型 商业智能人员制作销售仪表板 教学项目中的 EDA 与 ML 实战案例 AI研究人员训练个性化推荐系统原型 字段说明(Features & Columns) 字段名 类型 描述 Order ID string 唯一订单编号 Restaurant Name string 卷饼店名称(如 “Taco Palace”, “Guac & Roll” 等) Location string 美国城市(如 Austin, Los Angeles, Chicago 等) Order Time datetime (YYYY-MM-DD HH:MM:SS) 下单时间戳 Delivery Time datetime (YYYY-MM-DD HH:MM:SS) 配送完成时间戳 Delivery Duration (min) float 从下单到送达的分钟数 Taco Size categorical 卷饼大小:<br>Regular, Large Taco Type categorical 卷饼种类:<br>Beef, Chicken, Veggie, Fish, Pork Toppings Count integer 额外添加的配料数量(0–5) Distance (km) float 餐厅到客户的距离(公里) Price ($) float 总价(根据尺寸和配料自动计算) Tip ($) float 客户支付的小费金额 Wee

2025-06-04

全球游戏销售数据集(1971 年至 2024 年),电子游戏销量数据集,包含 64,016 款电子游戏的全球销售与市场表现,包含销量、平台、年份、类型、发行商、开发者、评分等,适用于数据分析,机器学习

Video Game Sales Dataset 包含 64,016 款电子游戏的全球销售与市场表现数据,涵盖从 1971 年至 2024 年的历史记录。数据来源广泛,包含多个平台、地区、类型、发行商及评分信息。 覆盖地区:北美、欧洲、日本、非洲、其他世界地区 字段丰富:销量、平台、年份、类型、发行商、开发者、评分等 可用于:市场趋势分析、预测建模、可视化、区域差异研究 该数据集适用于: 游戏行业分析师研究市场变化 数据科学家构建销量预测模型 教育工作者进行教学案例 市场营销人员制定区域策略 AI研究人员训练推荐系统 字段说明(Features & Columns) 字段名 类型 描述 Name string 游戏名称 Platform string 主要发售平台(如 PS4, Xbox One, Switch 等) Year integer (可为空) 发布年份(部分缺失) Genre string 游戏类型(如 Action, RPG, Sports 等) Publisher string 出版商 Developer string (可选) 开发者 NA_Sales float 北美地区销售额(百万美元) EU_Sales float 欧洲地区销售额(百万美元) JP_Sales float 日本地区销售额(百万美元) Other_Sales float 其他地区销售额(百万美元) Global_Sales float 全球总销售额(百万美元) Critic_Score float (可为空) Metacritic 评分(0–100) User_Score float (可为空) 用户评分(0–10) Rating string (可为空) ESRB 分级(如 E, T, M 等) 主要目标变量(Target Variables) 根据

2025-06-04

Ben 10 宇宙外星人与战斗数据集,外星人角色、敌对关系、战斗记录,适用于《Ben 10》角色分析、胜负预测模型

本Ben 10 Alien Universe Dataset 是一个虚构但高度结构化的数据集,专为《Ben 10》粉丝、数据科学爱好者、AI建模者和创意写作者设计。它包含: 70+ 种 Ben 10 外星人角色 150+ 条敌对关系 300 场战斗记录 包括经典版、终极版、多元宇宙版及重启系列外星人 每个外星人都有战斗力、弱点、种族等属性 战斗记录包含时间、地点、胜者、战斗方式等细节 可用于:数据分析、机器学习预测、网络图谱构建、故事生成等 该数据集适用于: 《Ben 10》粉丝进行角色分析 数据科学家构建胜负预测模型 教育工作者进行教学案例 游戏开发者构建虚拟战斗系统原型 AI写作工具训练用虚构世界语料 ben10_aliens.csv 描述: 每个 Ben 10 外星人的详细信息 字段名 类型 描述 alien_id integer 唯一外星人编号 name string 外星人名称(如 Heatblast, Diamondhead 等) series string 出现系列:<br>Classic, Alien Force, Ultimate, Omniverse, Reboot species string 所属种族(如 Pyronite, Tetramand 等) power_level integer (1–10) 力量等级 speed integer (1–10) 速度等级 intelligence integer (1–10) 智力等级 durability integer (1–10) 抗打击能力 weaknesses string (comma-separated) 弱点列表(如 Water, Electricity 等) abilities string (comma-separated) 特殊技能(如 Fire Blast, Supe

2025-06-04

谷歌(Alphabet)股票历史价格数据集,谷歌(Google)历史股票数据

本Google LLC(GOOGL)Stock Price Dataset 包含了从 2020 年至 2025 年的每日历史股价数据,适用于金融分析、量化交易建模、投资研究、机器学习预测等任务 字段说明(Features & Columns) 字段名 类型 描述 Date date (YYYY-MM-DD) 交易日期 Open float 当日开盘价(美元) High float 当日最高价 Low float 当日最低价 Close float 当日收盘价 Adj Close float 调整后收盘价(考虑分红、拆股等因素) Volume integer 成交量(单位:股数)

2025-06-04

多医院心脏病数据集,全球四家知名医疗机构的患者信息,用于分析并预测患者是否患有心脏病,(包含字段:年龄、性别、血压、胆固醇、心电图指标等,目标变量:是否存在心脏病)适用于机器学习训练

本心脏病临床数据集整合了来自 全球四家知名医疗机构的患者信息,用于分析并预测患者是否患有心脏病。该数据集最初由 UCI 机器学习仓库(UCI Machine Learning Repository) 发布,是医学建模和分类任务中最经典的数据集之一。 包含字段:年龄、性别、血压、胆固醇、心电图指标等 目标变量:是否存在心脏病(1 = 有,0 = 无) 特点:多源数据、结构清晰、适合教学与研究 数值型特征(Numerical Features) 字段名 类型 描述 age int 年龄(岁) trestbps int 静息血压(mm Hg) chol int 血清胆固醇水平(mg/dl) thalach int 最大心率(次/分钟) oldpeak float 运动诱发 ST 段压低程度(单位:mm) ca int (0–3) 通过荧光透视检查发现的主要血管数量 类别型特征(Categorical Features) 字段名 类型 取值范围 描述 sex binary 1 = 男,0 = 女 性别 cp categorical 0–3 胸痛类型(0=典型心绞痛, 1=非典型心绞痛, 2=非心源性疼痛, 3=无症状) fbs binary 1 = fasting blood sugar > 120 mg/dl,0 = 否 空腹血糖是否偏高 restecg categorical 0–2 静息心电图结果(0=正常, 1=ST-T 波异常, 2=左室肥厚) exang binary 1 = 是,0 = 否 是否运动诱发心绞痛 slope categorical 0–2 运动 ST 段斜率(0=上坡型, 1=平坦型, 2=下坡型) thal categorical 0–3(常见值) 地中海贫血检测结果(3=正常, 6=固定缺陷, 7=可逆缺陷) source string

2025-05-28

美国自杀死亡率数据集,美国从 2000 年至今的自杀死亡率,适用于数据分析、机器学习

据集提供了美国从 2000 年至今的年龄调整后自杀死亡率,单位为每 10 万居民中发生的自杀死亡人数。该数据由美国政府官方数据库发布,经过年龄标准化处理以消除人口结构变化对趋势分析的影响。 包含时间跨度:2000 年至当前(2025 年) 按年份、年龄组、人群分类 可用于:公共健康研究、政策评估、心理干预建模、可视化与宣传等 字段名 类型 描述 INDICATOR string 指标名称("Death rates for suicide") UNIT string 测量单位("Deaths per 100,000 resident population, age-adjusted") UNIT_NUM integer 单位编号(统一为 1) STUB_NAME string 分组类型(如 "Total", "Sex", "Race", "Hispanic Origin" 等) STUB_NAME_NUM integer 分组类型的数字编码 STUB_LABEL string 分组标签(如 "All persons", "Male", "Female", "White", "Black", "Hispanic", "Non-Hispanic" 等) STUB_LABEL_NUM integer 标签的数字编码 YEAR string 日历年(格式:YYYY) YEAR_NUM integer 年份顺序编号(便于建模) AGE string 年龄组别(如 "All ages", "Under 1 year", "1–4 years", ..., "85+ years") AGE_NUM integer 年龄组别的数字编码 ESTIMATE float 自杀死亡率(每 10 万人中的死亡人数) FLAG string (可选) 数据质量标识(通常为空,部分条目可能标注注释

2025-06-03

全球前100家SaaS公司与初创企业数据集,涵盖行业分布、营收规模、估值水平、融资情况、客户数量等关键指标,适用于数据分析、机器学习

Top 100 SaaS Companies 2025 数据集汇总了截至 2025 年全球最具影响力的 100 家软件即服务(SaaS)公司和初创企业的详细信息,涵盖行业分布、营收规模、估值水平、融资情况、客户数量等关键指标。 字段名 类型 描述 company_name string 公司名称(如 Salesforce, Shopify, Notion 等) industry string 所属行业(如 CRM, E-commerce, Collaboration, DevOps, Fintech 等) founded_year integer 成立年份 headquarters string 总部所在地国家或城市 employee_count integer 员工人数(估算值) valuation_usd float 当前估值(单位:百万美元 / 亿美元) arr_usd_million float 年度经常性收入(Annual Recurring Revenue,单位:百万美元) growth_rate_annual float (%) 年增长率(%) customer_count integer 订阅客户数(估算值) avg_revenue_per_customer float (USD) 平均每位客户的年收入(ARPU) funding_total float (USD) 累计融资总额(单位:百万美元) stage string 融资阶段(Pre-seed, Seed, Series A–Z, IPO, Private Equity, Public) is_public binary (0/1) 是否为上市公司 founders string (comma-separated) 创始人姓名列表 website string 官方网站链接

2025-06-03

每日健身追踪数据集,健身数据集,适用于数据分析、机器学习

数据集是一个模拟的日常健康与运动追踪数据集,用于分析用户的健身行为、健康趋势以及进行时间序列建模。它包含了多个关键指标,如步数、心率、卡路里消耗、锻炼类型等。 该数据集适用于: 时间序列预测建模 用户健康趋势分析 运动习惯与健康状况相关性研究 个性化推荐系统开发 可视化仪表板构建

2025-06-03

丹麦新冠感染与再感染健康数据集,3,000 条患者,26 个关键临床与人口统计字段,适用于机器学习、数据分析

数据集简介 本COVID-19 Reinfection and Health Dataset 是一个完全合成的、基于现实模式模拟的数据集,旨在反映 2020–2024 年间丹麦人群中的新冠病毒感染、再感染、疫苗接种、长期后遗症等流行病学特征。 包含 3,000 条患者记录 涵盖 26 个关键临床与人口统计字段 可用于:机器学习建模、风险因素分析、生存分析、教育用途等 该数据集适用于: 探索影响再感染风险的因素 分析疫苗保护效果随时间变化 研究 Long COVID 的潜在风险人群 构建预测模型(如再感染概率、住院率等)

2025-06-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除