自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(136)
  • 资源 (33)
  • 收藏
  • 关注

原创 奥运会数据分析,奥林匹克数据分析并绘图,python数据分析绘图,期末大作业项目

目录设置Python环境查看输入目录中的文件加载并查看数据集计算不重复活动次数根据活动特定的身高-体重平均值填充缺失值处理年龄列中的缺失值删除奖牌列中的缺失值数据可视化年龄的箱形图城市频率的条形图奖牌频率的条形图季节频率的条形图性别身高体重的散点图​编辑不同奖牌获得者的身高体重分布按季节划分的年龄分布箱形图按性别划分的体重分布(按季节)部分运行截图:以下为部分代码示例以及运行截图:完整代码以及数据集在以下

2025-01-14 15:44:19 831

原创 Vue 3 中 watch 监控的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种机制来响应数据的变化。在 Vue 3 中,watch是一个特别有用的选项,它允许你监听特定的数据属性,并在这些属性发生变化时执行自定义逻辑。本文将详细介绍 Vue 3 中watch的用法、工作原理以及一些最佳实践,并通过具体的代码示例帮助你更好地掌握这一功能。watchwatch选项用于定义一个或多个观察者(watcher),它们会监视指定的数据属性的变化。

2024-12-19 08:58:42 1104

原创 Vue 2 中 watch 监控的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种机制来响应数据的变化。在 Vue 2 中,watch是一个特别有用的选项,它允许你监听特定的数据属性,并在这些属性发生变化时执行自定义逻辑。本文将详细介绍 Vue 2 中watch的用法、工作原理以及一些最佳实践,并通过具体的代码示例帮助你更好地掌握这一功能。watchwatch选项用于定义一个或多个观察者(watcher),它们会监视指定的数据属性的变化。

2024-12-19 08:54:39 1129

原创 Vue 2 中页面跳转方式的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种方法来实现页面之间的导航。在 Vue 2 中,页面跳转主要通过 Vue Router 来管理,同时也支持其他方式如编程式导航和使用锚点链接。本文将详细介绍 Vue 2 中的各种页面跳转方式,并通过具体的代码示例帮助你更好地掌握这些功能。

2024-12-18 09:04:28 1379

原创 Vue 3 中页面跳转方式的详细介绍

Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架,它提供了多种方法来实现页面之间的导航。在 Vue 3 中,页面跳转主要通过 Vue Router 来管理,同时也支持其他方式如编程式导航和使用锚点链接。本文将详细介绍 Vue 3 中的各种页面跳转方式,并通过具体的代码示例帮助你更好地掌握这些功能。

2024-12-18 08:57:42 2121

原创 Vue 3 中 v-model 指令的使用详解

v-model是 Vue 提供的一个语法糖,它使得在表单控件元素与应用状态之间建立双向绑定变得非常简单。这意味着你可以轻松地将用户的输入反映到组件的状态中,并且当组件的状态发生变化时,相应的表单元素也会自动更新。v-model除了原生的 HTML 表单元素,v-model还可以在自定义组件上使用,以实现更复杂的双向绑定逻辑。要使v-model接受一个名为modelValue的 prop(默认情况下)。触发一个名为的事件来更新父组件的数据。例如:<template></div>

2024-12-17 08:59:05 1404

原创 Vue 2 中 v-model 指令的使用详解

v-model是 Vue 提供的一个语法糖,它使得在表单控件元素与应用状态之间建立双向绑定变得非常简单。这意味着你可以轻松地将用户的输入反映到组件的状态中,并且当组件的状态发生变化时,相应的表单元素也会自动更新。v-model除了原生的 HTML 表单元素,v-model还可以在自定义组件上使用,以实现更复杂的双向绑定逻辑。要使v-model接受一个名为value的 prop。触发一个名为input的事件来更新父组件的数据。

2024-12-17 08:55:00 1135

原创 Vue 3 中 v-html 指令的使用详解

v-html指令用于更新元素的innerHTML。与简单的文本插入不同,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-16 09:41:35 1480

原创 Vue 2 中 v-html 指令的使用详解

v-html指令用于更新元素的innerHTML。与简单的文本插入不同,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-16 09:39:09 1251

原创 在 Vue 3 中实现 Switch-Case

props: {value: {},watch(</script><template><script>props: {when: {},</Case></Switch>

2024-12-15 10:15:00 259

原创 在 Vue 2 中实现 Switch-Case 逻辑

props: {value: {},data() {return {},watch: {},return {</script>Case.vue<template><script>props: {when: {},

2024-12-15 10:15:00 448

原创 在 Vue 3 中隐藏页面元素的方法

有时我们需要更细粒度地控制元素的样式,比如不仅仅是隐藏,而是改变透明度、尺寸等。这时可以使用动态绑定类名,结合 CSS 来实现更复杂的效果。示例代码(使用 Composition API):<template><div></div>.hidden {opacity: 0;

2024-12-14 20:38:58 533

原创 在 Vue 2 中隐藏页面元素的方法

有时我们需要更细粒度地控制元素的样式,比如不仅仅是隐藏,而是改变透明度、尺寸等。这时可以使用动态绑定类名,结合 CSS 来实现更复杂的效果。示例代码</div><style>.hidden {opacity: 0;</script>

2024-12-14 20:32:59 506

原创 Vue 3 中 v-text 和 v-html 指令的使用详解

v-text指令用于更新元素的。无论元素原来的内容是什么,v-text都会将其替换为指定的文本内容。这意味着任何已有的子节点都会被移除,仅保留纯文本。v-html指令用于更新元素的innerHTML。与v-text不同的是,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-13 09:41:14 1084

原创 Vue 2 中 v-text 和 v-html 指令的使用详解

v-text指令用于更新元素的。无论元素原来的内容是什么,v-text都会将其替换为指定的文本内容。这意味着任何已有的子节点都会被移除,仅保留纯文本。v-html指令用于更新元素的innerHTML。与v-text不同的是,v-html不仅会插入文本,还会解析并渲染传入字符串中的 HTML 标记。这使得它可以用来嵌入富文本内容,如链接、图片等。

2024-12-13 09:38:00 1185

原创 Vue 2 中 v-for 指令的使用详解

v-for是 Vue 提供的一个用于循环渲染列表的指令,它可以基于任何可迭代的数据源(如数组、对象)创建一组相似的元素或组件。每当数据源发生变化时,Vue 会智能地更新 DOM,确保只对必要的部分进行操作,从而提高性能。

2024-12-12 09:10:27 1082

原创 Vue 3 中 v-for 指令的使用详解

v-for是 Vue 提供的一个用于循环渲染列表的指令,它可以基于任何可迭代的数据源(如数组、对象)创建一组相似的元素或组件。每当数据源发生变化时,Vue 会智能地更新 DOM,确保只对必要的部分进行操作,从而提高性能。

2024-12-12 09:07:08 1389

原创 Vue 3 中 v-if 指令的使用详解

v-if是 Vue 提供的一个条件渲染指令,当绑定到它的表达式返回true或者其他真值时,元素会被插入到 DOM 中;反之,如果表达式返回false或者假值,则该元素不会被渲染,也不会存在于 DOM 树中。这意味着v-if实现了真正的条件性渲染,而不是仅仅隐藏元素。

2024-12-11 14:32:41 2162

原创 Vue 2 中 v-if 指令的使用详解

v-if是 Vue 提供的一个条件渲染指令,当绑定到它的表达式返回true或者其他真值时,元素会被插入到 DOM 中;反之,如果表达式返回false或者假值,则该元素不会被渲染,也不会存在于 DOM 树中。这意味着v-if实现了真正的条件性渲染,而不是仅仅隐藏元素。

2024-12-11 14:26:47 1185

原创 Vue 3 中的变量与数据结构详解

Undefined。

2024-12-10 09:12:56 1010

原创 Vue 2 中的变量与数据结构详解

Undefined。

2024-12-10 09:09:40 577

原创 Vue 3 中的 Scope Slot(作用域插槽)详解

在 Vue 中,组件是可复用的 UI 构建块,它们可以封装自己的模板、逻辑和样式。然而,有时候我们希望父组件能够自定义子组件内部的内容展示方式,同时还能访问子组件提供的数据或状态。这就是作用域插槽的作用——它允许父组件向子组件传递数据的同时,保留对这些数据的控制权。

2024-12-09 10:45:58 784

原创 Vue 3 中的 Scope Slot(作用域插槽)详解

在 Vue 中,组件是可复用的 UI 构建块,它们可以封装自己的模板、逻辑和样式。然而,有时候我们希望父组件能够自定义子组件内部的内容展示方式,同时还能访问子组件提供的数据或状态。这就是作用域插槽的作用——它允许父组件向子组件传递数据的同时,保留对这些数据的控制权。

2024-12-09 10:39:48 1265

原创 Vue 2 中的 Scope Slot(作用域插槽)详解

作用域插槽是 Vue 提供的一种特殊类型的插槽,它不仅能够自定义内容,还能让父组件访问子组件内部的数据或逻辑。换句话说,它提供了一种机制,使得父组件可以在渲染子组件时接收来自子组件的数据,并根据这些数据来定制化显示的内容。这极大地增强了组件间的交互性和可复用性。

2024-12-09 10:27:26 796

原创 Vue 3 生命周期函数详解

Vue 实例从创建到销毁经历了一系列的阶段,这些阶段被称为生命周期。在每个阶段,Vue 提供了相应的钩子函数(Lifecycle Hooks),允许开发者在特定的时间点执行自定义逻辑。| |v v| |v v| |v vVue 3 引入了 Composition API 和setup函数,使得组件逻辑更加模块化和可复用。此外,部分生命周期钩子名称有所变化,以更清晰地表达其含义。

2024-12-08 18:41:16 1819

原创 Vue 2 生命周期函数详解

Vue 实例从创建到销毁经历了一系列的阶段,这些阶段被称为生命周期。在每个阶段,Vue 提供了相应的钩子函数(Lifecycle Hooks),允许开发者在特定的时间点执行自定义逻辑。

2024-12-08 18:36:17 562

原创 Vue 2 中的双向数据绑定详解

双向数据绑定意味着当用户交互改变视图中的值时,这些更改会自动反映到关联的数据模型中;同样地,如果通过代码修改了数据模型,相应的视图也会即时更新。这种机制极大地简化了前端开发工作流,使得开发者可以更加专注于业务逻辑的实现,而不必担心手动管理DOM操作。

2024-12-06 09:00:36 1039

原创 Vue 2 中的计算属性(Computed Properties)详解

计算属性是 Vue 提供的一种特殊的数据属性,它能够根据其他数据的变化自动更新。相比于直接在模板中编写复杂的表达式,计算属性提供了更好的代码可读性和性能优化,因为它们只会在依赖的数据发生变化时才重新计算。

2024-12-06 08:55:57 823

原创 Vue 3 中的计算属性(Computed Properties)详解

计算属性是 Vue 提供的一种特殊的属性类型,它能够根据其他数据的变化而自动生成新的值。相比于直接在模板中编写复杂的表达式,计算属性提供了更好的代码可读性和维护性,并且性能更优,因为 Vue 能够智能地跟踪计算属性的依赖关系,在相关数据变化时才重新计算。

2024-12-05 13:11:47 1202

原创 CSS Position(定位)详解

属性是控制元素布局和定位的关键属性之一。它允许开发者对网页上的元素进行精确定位,以创建复杂且美观的页面结构。,并解释它们之间的区别及应用场景。

2024-12-05 13:09:36 656

原创 CSS Padding 和 Margin 全解析

是两个非常基础且重要的属性,它们用于控制元素周围的空白区域。理解这两个属性的区别和用法,对于创建良好的布局和用户体验至关重要。**Padding(内边距)**是指元素内容与边框之间的空间。它增加了元素内部的空间,使得内容不会紧贴着边框显示,从而改善视觉效果和可读性。**Margin(外边距)**是位于元素边框之外的空间,用来隔开相邻元素。它不影响元素自身的尺寸,而是改变了元素与其他元素之间的距离。的概念、区别以及如何在实际项目中使用它们,并附上代码示例。

2024-12-04 13:21:04 1191

原创 常见的 CSS 对齐方式介绍及代码示例

在网页设计和开发中,元素的对齐是布局中一个非常重要的方面。CSS 提供了多种方法来对齐页面上的元素,以确保内容按照预期的方式排列。本文将介绍几种常见的 CSS 对齐方式,并附上代码示例。

2024-12-04 13:17:53 790

转载 JavaScript 变量

变量是用于存储信息的"容器"。

2024-12-03 14:08:37 53

原创 使用 Python 的beautifulsoup4和正则表达式获取页面中的所有图片链接

在 Web 开发和数据抓取中,经常需要从 HTML 页面中提取特定的信息,如图片链接。Python 提供了强大的工具来处理这类任务。本文将介绍如何使用 Python 的。如果需要更加精确地筛选图片链接(例如只获取特定格式或特定路径下的图片),可以使用正则表达式进行过滤。以下是完整的代码示例,包括获取网页内容、解析 HTML 并提取图片链接,以及使用正则表达式进行筛选。首先,确保安装了所需的库。库发送 HTTP 请求并获取网页的内容。解析 HTML 内容,并提取所有的。库来获取网页中所有的图片链接。

2024-12-03 09:40:57 470

原创 python使用正则表达式提取网页中的图片链接

接下来,我们将编写一个函数,使用正则表达式来匹配并提取符合条件的图片链接。以下是完整的代码示例,包括获取网页内容、使用正则表达式提取图片链接。首先,我们需要从目标网页获取 HTML 内容。pattern可以依据具体的需求来修改。

2024-12-03 09:15:28 330

原创 使用 Python 实现二叉树的层次遍历

层次遍历是一种逐层访问二叉树节点的遍历方法。与深度优先搜索(DFS)不同,层次遍历会先访问同一层的所有节点,然后再进入下一层。这种遍历方法通常使用队列(Queue)来实现,因为队列遵循先进先出(FIFO)的原则,非常适合按层次处理节点。在 Python 中,我们可以使用类(class)来定义二叉树的节点。每个节点包含一个值(val),以及指向左子节点和右子节点的指针(left 和 right)。示例代码。

2024-12-02 10:38:22 1211

原创 使用 Python 判断回文(不区分大小写,标点符号)

回文(Palindrome)是指一个字符串从前往后读和从后往前读是一样的。本文将介绍几种使用 Python 判断回文的方法,并提供相应的代码示例。虽然不是最高效的,但递归方法提供了一种优雅的方式来解决问题。我们可以递归地检查字符串的第一个和最后一个字符是否相同,然后对子字符串重复这一过程。双指针法是最直观的方法之一。我们可以使用两个指针,一个从字符串的开头开始,另一个从结尾开始,逐步向中间移动并比较对应的字符。如果需要更严格的处理,比如忽略大小写和非字母数字字符,可以使用正则表达式来清理输入字符串。

2024-12-02 10:31:15 589

原创 python中 pip 的使用方法详解

命令来安装 Python 包。可以直接从 PyPI(Python Package Index)安装,也可以从本地文件或特定 URL 安装。是 Python 的默认包管理工具,随 Python 3.x 版本一同安装。命令可以在 PyPI 上搜索特定的包。命令查看某个已安装包的详细信息,如版本、作者、摘要等。命令列出当前环境中已安装的所有包及其版本。命令来卸载不再需要的 Python 包。有时需要安装特定版本的包,可以使用等号 (可以在一条命令中安装多个包,用空格分隔。文件安装指定版本的依赖包。

2024-12-01 22:26:41 667

原创 Python 元组详解

元组可以用圆括号()来定义,元素之间用逗号分隔。即使只有一个元素,也需要在元素后面加上逗号来表示这是一个元组。示例代码# 定义空元组# 定义单元素元组# 定义多元素元组print(empty_tuple) # 输出: ()print(single_element_tuple) # 输出: (42,)print(multi_element_tuple) # 输出: (1, 2, 3, 'four', 'five')

2024-12-01 22:24:02 633

原创 Python 中的集合(Set)介绍

集合(set)是 Python 中的一种无序、不重复的数据结构。集合非常适合用于去除重复元素、进行集合运算等操作。本文将详细介绍集合的基本概念、常见操作以及一些实用的代码示例。

2024-11-30 07:45:00 220

全球各国家的月平均地表温度数据集,1940年到2024年间世界各地的温度数据

描述 该数据集包含了从1940年到2024年间全球各国家的月平均地表温度详情。当前气候变化主要由人类排放的温室气体引起,这种变暖趋势可以导致海平面、海冰和冰川平衡、降雨模式及极端温度的重大变化,对人类健康、农业系统、社会稳定及其他物种具有潜在的毁灭性影响。 属性信息 Country Name: 国家名称。 Country Code: 国家代码。 Year: 年份。 Day: 日期(虽然描述中提到“日期”,但考虑到这是月平均温度数据,这个字段可能是用于表示某个月内的特定天数或可能是一个冗余字段)。 Average surface temperature (Daily): 日平均地表温度。 Average surface temperature (Monthly): 月平均地表温度。

2025-02-11

教育与职业数据集,就业影响因素数据集,包含学生信息、学术表现、技能与课外活动、职业结果,学术表现与职业生涯之间的关系,包含了5000条学生教育背景、技能和职业结果的记录

数据集名称:Education & Career Success(教育与职业成功) 该数据集探讨了学术表现与职业生涯成功之间的关系,包含了5000条学生教育背景、技能和职业结果的记录。适用于多种分析用途,如基于教育预测工作成功、识别影响薪资的关键因素以及理解社交网络和实习在职业成长中的作用。 列描述 学生信息 Student_ID – 每个学生的唯一标识符。 Age – 学生的年龄(18-30岁)。 Gender – 性别(男、女或其它)。 学术表现 High_School_GPA – 高中GPA(2.0 - 4.0分制)。 SAT_Score – 标准化考试成绩(900 - 1600分)。 University_Ranking – 就读大学排名(1-1000)。 University_GPA – 大学GPA(2.0 - 4.0分制)。 Field_of_Study – 主修科目或学科(例如计算机科学、医学、商业等)。 技能与课外活动 Internships_Completed – 完成的实习数量(0-4次)。 Projects_Completed – 完成的个人/学术项目数量(0

2025-02-11

口腔癌预测数据集,包含人口最多的30个国家,患者生活习惯、诊断阶段、社会经济等

该数据集提供了来自全球人口最多的30个国家的口腔癌病例信息,重点关注了几个关键风险因素。这些因素包括但不限于: 年龄:患者的年龄。 性别:患者性别,可能影响疾病的发生和发展。 烟草/酒精使用情况:这些习惯与口腔癌的发生有密切关联。 社会经济背景:可能影响到个人的健康状况和获得治疗的机会。 诊断阶段:癌症被发现时的发展阶段,这会影响治疗的选择和预后。 使用场景 此数据集为研究人员和医疗专家提供了一个宝贵的资源,帮助他们理解和分析口腔癌的趋势,并基于患者的具体情况预测结果。具体应用场景包括但不限于: 趋势分析:了解不同国家和地区内口腔癌发病趋势的变化。 风险评估:根据不同的风险因素评估个体患口腔癌的风险。 预测模型开发:利用机器学习算法构建预测模型,提高对口腔癌早期识别的能力。

2025-02-11

柠檬叶病害数据集,柠檬树叶疾病图片数据集,可以用于图像识别,目标检测等,包含健康的和患病的柠檬叶片(总图像数:1354张,9种类别)

檬叶病害数据集(LLDD)是一个高质量的图像数据集,专为训练和评估用于柠檬叶病害分类的机器学习模型而设计。该数据集包含健康和患病柠檬叶片的图像,适用于植物病害检测、图像分类以及农业中的深度学习应用。 数据集概述: 类别:健康的和患病的柠檬叶片 总图像数:1354张 图像分辨率:高质量图像 格式:JPG 柠檬叶病害数据集(LLDD)包含了以下几种疾病类别: 炭疽病 (Anthracnose) - 100张图像 细菌性枯萎病 (Bacterial Blight) - 105张图像 柑橘溃疡病 (Citrus Canker) - 178张图像 卷曲病毒 (Curl Virus) - 115张图像 缺素症 (Deficiency Leaf) - 193张图像 干叶 (Dry Leaf) - 186张图像 健康叶片 (Healthy Leaf) - 210张图像 煤污病 (Sooty Mould) - 153张图像 红蜘蛛螨 (Spider Mites) - 114张图像

2025-02-10

印度货币汇率数据集,印度卢比对四种主要货币的月度和每日汇率历史记录 包括美元(USD)、英镑(GBP)、加元(CAD)和澳元(AUD)

个数据集包含了过去大约30年间印度卢比(INR)对四种主要货币的月度和每日汇率历史记录。这些主要货币包括美元(USD)、英镑(GBP)、加元(CAD)和澳元(AUD)。以下是该数据集的主要内容及其潜在用途: 数据集概述: 时间跨度:大约30年,记录了每个月初每种外币对1单位印度卢比的价值。 数据来源:月度汇率通过网络爬虫收集,并整合到一个单一的数据集中;每日汇率则基于月度数据使用插值法预测得出。 数据集中的列: 日期(Date):表示每个月的开始或每个插值后的每日值的时间戳(格式为YYYY-MM-DD)。 USD_Price:1美元兑换印度卢比的汇率。 GBP_Price:1英镑兑换印度卢比的汇率。 CAD_Price:1加元兑换印度卢比的汇率。 AUD_Price:1澳元兑换印度卢比的汇率。

2025-02-10

抖音前100创作者数据集,2025年全球排名前100的TikTok账号信息

这个数据集提供了2025年全球排名前100的TikTok账号信息,依据其受欢迎程度(主要是关注者数量)进行排名。以下是该数据集包含的主要特征及其用途: 数据集特征: 排名(Rank):根据关注者数量对账号进行排名。 上传视频数(Uploads):账号总共上传的视频数量。 观看次数(Views):账号所有视频累计获得的观看次数。 关注者(Followers):账号的关注者数量。 正在关注(Following):该用户关注的其他账号数量。 用户名(Username):TikTok账号的用户名。 数据集用途: 趋势分析:通过分析这些顶级账号的数据,了解当前最受欢迎的内容类型和风格,识别新兴的趋势。 内容策略制定:研究这些成功账号的内容策略,帮助创作者优化自己的内容创作方向和发布策略。 社交媒体影响者研究:理解顶级社交媒体影响者的成长模式和互动方式,为品牌合作和市场营销提供参考。 数据分析与机器学习模型开发:基于这些数据进行探索性数据分析(EDA),创建可视化图表,或训练预测模型以预测未来的表现或增长趋势。

2025-02-10

直肠癌数据集,世界各地结直肠癌患者信息,包含患者数据、生活方式、癌症结果等(可用于机器学习模型、数据分析)

这个数据集包含了来自世界各地结直肠癌患者的信息,旨在帮助研究人员和医疗专业人员更好地理解哪些人群处于更高的风险中、治疗获取如何影响生存率以及哪些因素有助于改善或恶化患者的预后。以下是该数据集可能包含的主要信息及其用途: 数据集主要内容: 年龄(Age):患者的年龄,有助于分析不同年龄段的发病风险。 性别(Gender):患者的性别,用于研究性别差异对疾病的影响。 种族(Race):患者的种族背景,可以揭示不同种族间的发病率和生存率差异。 饮食习惯(Diet):记录患者的日常饮食情况,探讨饮食与疾病发生及发展的关系。 医疗历史(Medical History):包括患者过去的病史和其他健康问题,帮助识别潜在的风险因素。 医疗服务可及性(Access to Healthcare):涉及患者获得医疗服务的情况,如是否拥有医疗保险、居住地距离医院的距离等,评估其对治疗效果的影响。 生活方式选择(Lifestyle Choices):如吸烟、饮酒、运动频率等生活习惯,研究这些因素对疾病发展的影响。 癌症结果(Cancer Outcomes):包括癌症的分期、治疗方式、复发情况及生存状态等信息,

2025-02-10

视频网站最受欢迎播放量最高的视频数据,截至2025年最受欢迎的1000个油管视频的详细信息

这个数据集包含了截至2025年1月27日最受欢迎的1000个YouTube视频的详细信息。以下是该数据集中每个属性的具体说明: 数据集属性信息: 排名(Rank):视频的排名,表示其受欢迎程度。 视频(Video):对视频内容的描述,可能包括标题或简短介绍。 观看次数(Video Views):视频被观看的总次数。 点赞数(Likes):视频获得的点赞数量。 点踩数(Dislikes):视频收到的不喜欢的数量。 类别(Category):视频所属的分类,如音乐、娱乐、教育等。 发布年份(Published):视频发布的年份。

2025-02-10

电商购物数据集,购物趋势数据集,消费者购物趋势数据集,包括购买日期、交易金额、产品类别和支付方式,涵盖客户年龄组、性别、地理位置以及忠诚度,记录了购买频率、每次交易的平均花费

数据集主要内容: 交易详情:包括购买日期、交易金额、产品类别和支付方式等。 客户信息:涵盖年龄组、性别、地理位置以及忠诚度状态等信息。 购物行为:记录了购买频率、每次交易的平均花费以及季节性趋势等。 使用目的: 分析消费者购买模式:通过时间序列分析来理解消费者的购买习惯如何随时间变化。 识别热门产品类别和高绩效细分市场:帮助识别哪些产品类别最受欢迎,哪些客户群体表现最佳。 发展客户细分和个人化策略:基于客户的人口统计信息和购买行为进行细分,并制定针对性的营销策略。 构建预测模型:用于销售预测或客户保留率预测,支持决策制定。 适用对象: 数据科学家、分析师和市场营销专家可以利用这些数据进行探索性数据分析、创建可视化图表或者训练机器学习模型,从而为零售行业的数据驱动决策提供有价值的见解。 应用场景示例: 探索性数据分析(EDA):可以通过对数据集的基本统计分析和可视化来初步了解数据分布和潜在模式。 可视化:生成图表和仪表盘以直观展示销售趋势、客户偏好等重要指标。 机器学习模型:构建分类或回归模型来预测未来的销售情况或顾客行为,比如使用历史销售数据预测下一季度的销售额,或是根据客户的购买历史

2025-02-10

英超英冠比赛详细数据,英格兰足球联赛(包括英超和英冠)中的比赛信息,足球比赛数据集

记录了从1993/94赛季到2024/25赛季中期,在英格兰最高级别足球联赛(包括英超和英冠)中进行的比赛信息。这个数据集由25个不同的变量组成,非常适合用来了解英格兰顶级足球联赛的历史和发展。 以下是这些变量的简要介绍: 日期:比赛进行的日期。 赛季:比赛发生的足球赛季,通常跨越两个年份,例如2023-24赛季。 主队:在主场比赛的队伍。 客队:来访的队伍。 全场主队进球:全场比赛结束时主队总共进球数。 全场客队进球:全场比赛结束时客队总共进球数。 全场结果:全场比赛的结果(H表示主队胜,A表示客队胜,D表示平局)。 半场主队进球:半场结束时主队的进球数。 半场客队进球:半场结束时客队的进球数。 半场结果:半场比赛的结果(H表示主队领先,A表示客队领先,D表示平局)。 裁判:当值裁判的名字。 主队射门:主队尝试射门的总次数。 客队射门:客队尝试射门的总次数。 主队射正:主队射正球门的次数。 客队射正:客队射正球门的次数。 主队犯规:主队犯规的次数。 客队犯规:客队犯规的次数。 主队角球:主队获得的角球数。 客队角球:客队获得的角球数。 主队黄牌:主队球员被出示的黄牌数量。 客队黄

2025-02-10

机器生成的植物图像分类数据集,ai作图数据集,包含五大类植物,可用于图像识别

本数据集专为支持机器学习模型训练及竞赛需求而设计,包含了大量高质量的植物合成图像。这些图像模拟了各种真实环境下的植物生长状态,旨在帮助研究人员和开发者提升模型在复杂条件下的识别与分类能力。 包含: cactus(仙人掌) fern(蕨类) rose(玫瑰) sunflower(向日葵) tulip(郁金香) 主要特点: 多样化的植物种类:涵盖多种常见和稀有的植物种类,确保模型可以学习到广泛的特征。 丰富的场景模拟:包括不同季节、天气状况、成长阶段以及拍摄角度的图像,增强模型的泛化能力。 精确标注:每张图像都经过专业人员仔细标注,提供准确的分类标签,适合用于监督学习任务。 高分辨率图像:所有图像均为高清质量,保证细节清晰,有助于提高模型的识别精度。

2025-02-07

电子商务产品和客户数据集,包含详细产品信息以及购买客户的信息,可以用于数据分析机器学习

该合成数据集代表了包含8000个唯一条目的电子商务产品数据。每个条目包括以下特征: Product_ID (产品ID): 每个产品的唯一标识符。 Product_Name (产品名称): 描述产品的名称(例如,“无线鼠标”、“智能手机”),根据其类别生成。 Category (类别): 产品所属的广泛类别(例如,“电子产品”、“服装”、“家具”)。 Sub_Category (子类别): 主类别下的具体子类别(例如,“电子产品”下的“手机”)。 Price (价格): 产品的价格,根据其类别有所不同。 Customer_Age (客户年龄): 可能购买该产品的客户的年龄,范围从18岁到65岁。 Customer_Gender (客户性别): 客户的性别(“男性”或“女性”)。 Purchase_History (购买历史): 模拟的客户购买次数,受其年龄和产品类别的影响。 Review_Rating (评论评分): 根据产品的价格给出的评分,范围为1到5星。 Review_Sentiment (评论情感): 评论的情感倾向,可以是“负面”、“中立”、“正面”或“非常正面”,基于产品的

2025-02-07

肺癌风险与趋势数据集,来自25个国家,220,632个个体的详细信息,如年龄、性别、吸烟史、癌症诊断、环境暴露和生存率

该数据集提供了关于全球25个人口最多的国家中肺癌病例、风险因素、吸烟趋势和医疗资源获取的宝贵见解。它包括220,632个个体的详细信息,如年龄、性别、吸烟史、癌症诊断、环境暴露和生存率。 列描述 Age (年龄): 个体的年龄。 Gender (性别): 个体的性别(例如男性、女性)。 Smoking History (吸烟史): 个体的吸烟历史,可能包括是否吸烟、吸烟年限、每日吸烟量等信息。 Cancer Diagnosis (癌症诊断): 是否被诊断为肺癌(是/否),以及诊断的具体细节(如分期、类型等)。 Environmental Exposure (环境暴露): 个体接触的环境风险因素,如空气污染、职业暴露等。 Survival Rate (生存率): 肺癌患者的生存率或存活时间。 Country (国家): 数据来源的国家,涵盖25个人口最多的国家。 Healthcare Access (医疗资源获取): 个体获取医疗服务的情况,包括是否有医疗保险、最近医疗机构的距离等。 Risk Factors (风险因素): 其他可能导致肺癌的风险因素,如家族病史、饮食习惯等。

2025-02-07

快速配送代理的评论和评分数据集,闪送评论和评分数据集,外卖反馈数据,涵盖了客户评分、评论、配送时间、订单类型、地点、产品可用性以及客户服务评分等信息,可以用于机器学习、数据分析

“快速配送代理的评论和评分数据集”包含了客户对Zepto、Blinkit、Swiggy Instamart和JioMart等热门快速配送服务提供商的反馈。该数据集包含5000条记录,涵盖了客户评分、评论、配送时间、订单类型、地点、产品可用性以及客户服务评分等信息。 列描述 Agent Name (配送服务名称): 配送服务的名称(例如Zepto、Blinkit、Swiggy Instamart、JioMart)。 Rating (评分): 客户对配送服务的评分,范围为1到5星。 Review Text (评论文本): 客户对其体验的简短文字评论。 Delivery Time (配送时间): 完成配送所需的时间,以分钟为单位。 Location (地点): 配送发生的地理位置。 Order Type (订单类型): 订单中的物品类型(例如杂货、食品、必需品)。 Customer Feedback Type (客户反馈类型): 反馈的情感倾向(正面、中立、负面)。 Price Range (价格区间): 订单的价格区间(低、中、高)。 Discount Applied (是否应用折扣):

2025-02-06

加州野火损害数据集,美国加州火灾数据, 2014年-2025年,可用于数据分析,机器学习

加州野火损害数据集提供了过去十年内加州野火事件的全面概览。它包括了关于破坏程度的数据,如烧毁面积(以英亩为单位)、被毁房屋和企业的数量、受损车辆、受伤人数、死亡人数以及估计的经济损失(以百万美元为单位)。数据集还记录了每次野火的日期、地点和原因,并将原因分类为闪电引发、人为活动引发或未知。 数据集详情 时间范围: 2014年至2025年2月 内容: 包含野火事件的各种详细信息,涵盖从烧毁面积到经济损失等多个方面。 列描述 Date (日期): 每次野火发生的具体日期。 Location (地点): 野火发生的地理位置,通常精确到县或更具体的区域。 Cause (原因): 引发野火的原因,分类为: Lightning (闪电) Human Activity (人为活动) Unknown (未知) Area Burned (烧毁面积): 野火烧毁的土地面积,以英亩为单位。 Homes Destroyed (被毁房屋数量): 野火中被完全摧毁的房屋数量。 Businesses Destroyed (被毁企业数量): 野火中被完全摧毁的企业数量。 Vehicles Damaged (受损车

2025-02-06

全球电影票房数据集,从2000年到2024年全球票房表现的详细分析,涵盖了关键指标如上映日期、类型、制作预算、全球票房收入等

该数据集提供了从2000年到2024年全球票房表现的详细分析。它包括这一时期内发布的电影信息,涵盖了关键指标如上映日期、类型、制作预算、全球票房收入等。该数据集旨在帮助研究人员、数据科学家和电影爱好者探索电影行业的趋势、分析盈利能力并了解多年来观众的偏好。 核心字段 ID – 唯一标识符 描述:每部电影的唯一标识符。 Movie Name – 电影标题 描述:电影的名称。 Release Date – 上映日期 描述:电影首次在影院上映的日期(格式:YYYY-MM-DD)。 Genres – 类型 描述:电影的主要类型(如动作、喜剧、剧情等)。 Production Budget (USD) – 制作预算(美元) 描述:制作该电影的估计成本。 Worldwide Gross (USD) – 全球票房收入(美元) 描述:电影在全球范围内的总票房收入,包括国内和国际市场。 Domestic Gross (USD) – 国内票房收入(美元) 描述:电影在美国和加拿大的总票房收入。 International Gross (USD) – 国际票房收入(美元) 描述:来自国际市场的票房收入。

2025-02-05

电影数据集,提供了6,500多部电影的财务和绩效指标,包括关键细节如制作预算、票房收入(国内和国际)、估计的DVD/蓝光销售、上映日期、评分等

包括关键细节如制作预算、票房收入(国内和国际)、估计的DVD/蓝光销售、上映日期、评分等 一般电影信息 ID – 唯一标识符 描述:每部电影的唯一标识符。 Movie Name – 电影标题 描述:电影的名称。 Release Date – 上映日期 描述:电影首次在影院上映的日期(格式:YYYY-MM-DD)。 MPAA Rating – 年龄分类 描述:电影的年龄分级(例如:PG、R等)。 Running Time (minutes) – 片长(分钟) 描述:电影的时长,以分钟为单位。 Franchise – 系列电影 描述:如果适用,电影所属的系列或品牌(例如:漫威电影宇宙、星球大战等)。 Keywords – 关键词 描述:描述电影主题的关键词(例如:冒险、爱情、科幻等) 财务表现 Production Budget (USD) – 制作预算(美元) Domestic Gross (USD) – 国内总收入(美元) Worldwide Gross (USD) – 全球总收入(美元) Infl. Adj. Dom. BO (USD) – 调整通胀后的国内票房收入(美元)

2025-02-05

陨石降落特征统计数据,陨石详细信息数据集,它包含了全球范围内34,513颗记录在案的陨石的关键细节,如位置、类型、质量、降落状态(是否目击到坠落或后来发现)以及地理坐标

核心字段 Name – 陨石名称 描述:每颗陨石的唯一标识名称。 Type – 陨石类型 描述:陨石的分类,例如铁质陨石、石质陨石等。 Mass (grams) – 质量(克) 描述:陨石的质量,以克为单位。 Fell or Found – 是否目击到坠落或后来发现 描述:指示陨石是被目击到坠落还是后来发现的(例如:Fell 或 Found)。 Year – 发现或坠落年份 描述:陨石发现或坠落的具体年份(格式:YYYY)。 Location Data – 位置数据 Latitude – 纬度 描述:陨石发现地点的纬度坐标。 Longitude – 经度 描述:陨石发现地点的经度坐标。 Geo-coordinates – 地理坐标 描述:包含纬度和经度的地理坐标信息。

2025-02-05

印度道路交通事故数据集,供了2016年至2019年间印度各邦和联邦属地(UTs)的道路交通事故的详细记录 它包括每年报告的交通事故总数

该数据集提供了2016年至2019年间印度各邦和联邦属地(UTs)的道路交通事故的详细记录。它包括每年报告的交通事故总数,突显了道路安全趋势和事故严重程度随时间的变化。 此数据集可用于分析事故热点、评估道路安全措施的有效性,并识别有助于制定减少交通事故相关政策的模式。

2025-02-05

心脏病发作数据,日本青年与成年人心脏病发作数据集,心脏健康状况、风险因素及潜在触发因素

该数据集深入探讨了日本的心脏病发作情况,重点关注青年和成年两个年龄组之间的差异。随着全球心血管疾病发病率的上升,此数据集提供了对这两个不同人群心脏健康状况、风险因素及潜在触发因素的重要见解。 数据集包含多种特征,适用于数据分析、机器 核心字段 age – 年龄 demographics – 人口统计信息 cholesterol_levels – 胆固醇水平 resting_blood_pressure – 静息血压 max_heart_rate_achieved – 达到的最大心率 fasting_blood_sugar – 空腹血糖水平 electrocardiographic_results – 心电图结果 body_mass_index (BMI) – 体重指数 exercise_induced_angina – 运动诱发的心绞痛 physical_activity – 身体活动 描述:患者的日常身体活动水平(如每周运动次数、强度等)。 diet – 饮食习惯 描述:患者的饮食习惯(如高脂饮食、低盐饮食等)。 other_contributing_habits – 其他生活习惯

2025-02-05

微软股票数据集,Microsoft股价数据集,包括开盘价、最高价、最低价、收盘价、调整后的收盘价以及成交量等

该数据集包含了微软公司(Microsoft)在2025年的每日股票交易数据。每条记录代表一天的交易信息,包括开盘价、最高价、最低价、收盘价、调整后的收盘价以及成交量等关键指标。这些数据对于进行股票分析、市场趋势预测和投资决策具有重要价值。 核心字段 date – 日期 描述:记录的日期,格式为 YYYY-MM-DD。 open – 开盘价 描述:当天股市开盘时的价格。 high – 最高价 描述:当天交易过程中达到的最高价格。 low – 最低价 描述:当天交易过程中达到的最低价格。 close – 收盘价(已调整拆股) 描述:当天股市收盘时的价格,经过拆股调整。 adj_close – 调整后的收盘价 描述:经过所有适用的拆股和分红分配调整后的收盘价格。数据使用适当的拆股和分红乘数进行调整,符合证券价格研究中心(CRSP)的标准。 volume – 成交量 描述:当天交易的股票数量

2025-02-05

电影详细信息数据集,包含了8,551部电影的详细信息,包括标题、上映日期、受欢迎程度评分和用户评分等

movie_id – 唯一电影ID(主键) title – 电影标题 release_date – 上映日期(格式:YYYY-MM-DD) popularity_score – 受欢迎程度评分 vote_count – 投票数量(参与评分的人数) vote_average – 平均评分(通常为1到10之间的分数) overview – 电影概述(简要剧情介绍) genres – 电影类型(多个类型以逗号分隔) 示例字段描述:动作, 喜剧, 科幻 runtime – 电影时长(分钟) production_countries – 制片国家(多个制片国家以逗号分隔) 示例字段描述:美国, 英国, 加拿大 spoken_languages – 对白语言(多个语言以逗号分隔) 示例字段描述:英语, 法语, 西班牙语 budget – 制作预算(美元) revenue – 票房收入(美元) director – 导演姓名 cast – 主要演员

2025-02-05

咖啡优惠数据集,营销活动数据,包含了关于咖啡店客户奖励优惠的详细信息,包括优惠详情、客户人口统计信息以及客户活动事件

数据集分为三个主要文件夹:offers、customers 和 events offer_id: 唯一优惠ID(主键) offer_type: 优惠类型:bogo(买一送一)、discount(折扣)或 informational(信息性) difficulty: 完成优惠所需的最低消费金额 reward: 完成优惠后获得的奖励金额(美元) duration: 客户收到优惠后必须完成的时间(天数) channels: 发送给客户的营销渠道列表(如电子邮件、短信、应用内通知等) customer_id: 唯一客户ID(主键) became_member_on: 客户创建账户的日期(格式:yyyymmdd) gender: 客户性别:M(男性)、F(女性)或 O(其他) age: 客户年龄 income: 客户估计的年收入(美元) customer_id: 关联客户的客户ID(外键) event: 事件描述(transaction: 交易;offer received: 收到优惠;offer viewed: 查看优惠;offer completed: 完成优惠) value: time

2025-02-05

广告活动数据集,广告投放数据,广告绩效效果数据,适用于营销分析、绩效预测的机器学习模型

该数据集包含合成的广告活动数据,专为构建和评估预测模型而设计。每一行代表一个单独的广告活动,并包括各种特征,如预算、持续时间、平台、内容类型、目标人口统计信息、地区以及性能指标(如点击率CTR、每次点击成本CPC和转化率)。成功标签(Success)基于CTR和转化率阈值指示广告活动是否有效。 该数据集适用于营销分析、广告活动优化和绩效预测的机器学习模型。 Budget – 广告活动的预算(美元单位)。 Duration – 广告活动运行的天数。 Platform – 广告投放的平台(Facebook、Instagram、Google等) Content_Type – 广告内容类型(图片、视频、等) Target_Age – 目标年龄段。 Target_Gender – 目标性别。 Region – 目标地理区域。 Clicks – 点击广告 Conversions – 成功转化的次数。 CTR (Click-Through Rate) – 点击率 CPC (Cost Per Click) – 每次点击成本 Conversion_Rate – 转化率

2025-02-05

阑尾癌阑尾炎预测数据集,全球25国26万个体临床与生活方式数据集:支持阑尾癌诊断与风险预测的医疗研究

本数据集包含了来自25个国家的26万个个体的临床、人口统计和生活方式数据,专为医疗研究和预测建模设计。数据集涵盖了与阑尾癌诊断和风险因素相关的多样化变量,适用于机器学习任务、统计分析和探索性数据研究。通过整合全球多样化的健康数据,该数据集为肿瘤学和公共卫生领域的研究提供了宝贵的资源,支持从风险预测到疾病诊断的多维度分析,助力医疗AI和健康研究的发展。 包含: 患者ID 国家 年龄 性别 身体质量指数 吸烟状态 酒精消耗量 癌症家族史 基因突变 慢性疾病 身体活动水平 饮食类型 辐射暴露 既往癌症史 血压 胆固醇水平 白细胞计数 红细胞计数 血小板计数 肿瘤标志物 症状严重程度 诊断延迟天数 治疗类型 诊断后生存年数 阑尾癌预测

2025-02-05

糖尿病预测合成数据集,合成患者记录集合,适用于机器学习与健康研究

本数据集是一个为糖尿病预测机器学习应用设计的合成患者记录集合。它涵盖了广泛的人口统计、生活方式和医疗历史特征,以及关键的健康指标,如BMI、血压、血糖水平和胆固醇。数据集还包含了生活方式因素,如运动习惯、饮食和压力水平,以及医疗历史指标,如糖尿病家族史和心脏病史。通过一个二分类目标变量(是否诊断为糖尿病),该数据集非常适合用于构建分类模型、进行探索性数据分析(EDA)和特征工程。特别适合健康与医疗人工智能研究,为糖尿病及相关健康问题的预测分析提供了坚实的基础。

2025-02-05

公司投资趋势数据集,印度创业公司投资趋势数据集 (涵盖了印度各个行业、融资阶段和地区的12428家初创公司,包括有关融资金额、投资者、估值和增长率的信息)

该数据集提供了从2000年到2023年印度创业公司投资趋势的详细概述。它包含了关于创业公司详情、融资活动和关键指标的信息,这些信息突出了行业增长、融资阶段和投资者参与情况。数据经过精心整理,旨在帮助分析师和研究人员了解趋势、评估行业表现并研究投资对创业公司的影响。 主要亮点: 涵盖了印度各个行业、融资阶段和地区的12428家初创公司。 包括有关融资金额、投资者、估值和增长率的信息。 包含ESG评分、多样性指数和技术堆栈等补充指标。

2025-01-26

NBA球员数据集,NBA历史与当前比赛及球员统计数据集,提供了从1946年至今的NBA比赛和球员统计数据的记录(6个excel表格和sql文件、包含每位球员,球队,比赛等信息)可以用于数据分析

这个精心策划的数据集提供了从1946年至今的NBA比赛和球员统计数据的详尽记录。它专为篮球爱好者、分析师和数据科学家设计,为探索篮球历史、球员表现和团队动态提供了坚实的基础。 PlayerStatistics.csv player_id: 球员唯一标识符。 game_id: 比赛唯一标识符。 points: 得分。 rebounds: 篮板。 assists: 助攻。 steals: 抢断。 blocks: 盖帽。 minutes_played: 出场时间。 TeamStatistics.csv team_id: 团队唯一标识符。 game_id: 比赛唯一标识符。 points: 得分。 rebounds: 篮板。 assists: 助攻。 steals: 抢断。 blocks: 盖帽。 Games.csv game_id: 比赛唯一标识符。 home_team_id: 主队唯一标识符。 away_team_id: 客队唯一标识符。 date: 比赛日期。 arena: 比赛场馆。 attendance: 观众人数。 Players.csv 描述:每位球员的生物信息,包括身高、体重等

2025-01-26

Meta市值数据集,Meta股票价格数据集,facebook股票价格数据集

关键字段 date:日期。 open:开盘价,即当天股市开盘时的价格。 high:最高价,即当天交易过程中达到的最高价格。 low:最低价,即当天交易过程中达到的最低价格。 close:收盘价,经过拆股调整后的当天收盘价格。 adj_close:调整后的收盘价,考虑了所有适用的拆股和分红分配后的收盘价格。数据按照适当的拆股和分红乘数进行调整,符合证券价格研究中心(CRSP)的标准。 volume:成交量,当天交易的股票数量。

2025-01-26

孟加拉国1980-2023年综合社会经济与环境数据集,国家GDP数据,提供了孟加拉国从1980年到2023年的社会经济、人口统计和环境指标的广泛概述(人口、经济指标、贫困和社会指标、环境指标)

该数据集提供了孟加拉国从1980年到2023年的社会经济、人口统计和环境指标的广泛概述。它涵盖了多种特征,包括识字率、人口统计数据、经济增长指标、贸易平衡、环境指标、医疗支出和贫困率。该数据集旨在促进对孟加拉国发展趋势、政策影响和可持续性挑战的研究和分析。 关键特征 人口与人口统计 总人口 增长率 人口密度 出生/死亡率 婴儿死亡率 生育率 城乡人口分布 移民统计 GDP、GNP、GNI 贸易平衡 进出口指标 通货膨胀率 失业率 劳动参与率 外国直接投资(FDI) 贫困和社会指标 国家、农村和城市贫困率 识字率 医疗支出 孕产妇死亡率 环境指标 树木覆盖损失 碳排放 可再生能源使用 森林砍伐原因 温室气体排放 基础设施与发展 电力和清洁水的获取 耕地面积 私人车辆 旅游支出 犯罪与国防 犯罪率 凶杀率 军事支出 教育 教育支出占GDP的比例 青年失业率

2025-01-26

天气影响因素数据集,包含(时间、温度、降水量、风速、湿度、气压),用于机器学习的天气预测,目标根据多种变量输出天气状况

给定的数据集包含多个与天气相关的变量,旨在通过这些变量预测天气状况。将Weather Condition(天气状况)作为输出目标。 数据预处理步骤 选择相关特征 Date: 用于时间序列分析或作为训练和测试数据的时间分割依据。 Temperature (°C): 平均温度是影响天气状况的重要因素之一。 Precipitation (mm): 总降水量有助于区分晴天、雨天等不同天气状况。 Wind Speed (km/h): 风速可以辅助判断是否有强风等特殊天气现象。 Humidity (%): 湿度水平也是决定天气条件的关键因素。 Pressure (hPa): 气压变化通常与天气系统的移动有关,对短期天气预报有帮助。 删除无关特征 删除所有不直接参与预测的列,例如最大/最小湿度、压力倾向等,除非它们能显著提高模型性能。 数据清洗 检查并处理缺失值,可以通过插值法填补连续型变量的空缺,对于分类变量则可以选择最常见的类别填充。 将日期转换为适合机器学习算法使用的格式,如提取年份、月份、星期几等特征。

2025-01-24

海洋动物图片数据集,可用于机器学习算法,目标检测(将海洋动物分类为五个不同类别:海豚、鱼、龙虾、章鱼和海马 )分为测试集,训练集,验证集

(将海洋动物分类为五个不同类别:海豚、鱼、龙虾、章鱼和海马。) 此数据集适用于多种分析任务,包括但不限于: 机器学习与深度学习模型的比较分析:通过训练和测试不同的算法,评估其在特定任务上的表现差异。 自定义分类模型的训练与评估:开发针对海洋动物分类的新模型,并使用此数据集进行验证。 分类准确性和性能指标基准测试:建立基准,以衡量现有模型的表现,并推动新算法的发展。 潜在用例 学术研究:为研究人员提供一个标准的数据集,用于发表关于海洋动物分类的研究成果。 算法开发:帮助开发者优化现有模型或创建新的解决方案,提高分类准确性。 教育用途:作为教学资源,教授学生如何处理真实世界的数据集并应用机器学习技术。 生态保护:支持海洋生物保护项目,利用先进的分类工具监测和保护濒危物种。

2025-01-24

精灵宝可梦数据集,神奇宝贝数据集,Pokemon数据,包含精灵的各种属性、特征、游戏中的数值

该数据集有不同世代和类型的宝可梦统计数据。它提供了一个结构良好、信息全面的单表,包含所有宝可梦的相关信息,旨在方便在各种数据分析工具和平台上使用。 数据集字段说明 pokemon_id:每个宝可梦的唯一标识符。 name:宝可梦的名称。 generation:宝可梦所属的世代。 type_1, type_2:宝可梦的主要类型和次要类型(如果有的话)。 total_points:宝可梦的基础点数总和(HP、攻击、防御等的总和)。 hp:生命值(Hit Points)。 attack:攻击力。 defense:防御力。 sp_atk:特殊攻击力。 sp_def:特殊防御力。 speed:速度。 abilities:宝可梦的能力列表。 height_m:身高(米)。 weight_kg:体重(千克)。 egg_group:蛋群类别。 catch_rate:捕捉率。 base_friendship:基础友好度。 base_experience:击败后获得的基础经验值。 growth_rate:成长速率。 egg_cycles:孵化所需步数循环次数。

2025-01-24

笔记本电脑线上线下销售数据,印度笔记本电脑购买数据集,包括关键的人口统计细节(如年龄、性别、城市和收入水平)以及购买行为属性(如首选品牌、价格范围、支付方式和购买频率)

该数据集包含合成的印度市场个人购买笔记本电脑的数据,涵盖在线和线下销售渠道。它包括关键的人口统计细节(如年龄、性别、城市和收入水平)以及购买行为属性(如首选品牌、价格范围、支付方式和购买频率)。此数据集旨在提供关于消费者趋势、受欢迎的笔记本电脑品牌以及影响购买决策因素的洞察。 关键字段 Customer ID:每个顾客的唯一标识符。 Age:顾客年龄。 Gender:顾客性别。 City:顾客所在的城市。 Income Level:顾客的收入水平(如低、中、高)。 Purchase Mode:购买模式(在线/线下)。 Brand Purchased:购买的品牌(例如Dell、HP、Lenovo、Apple、Asus等)。 Price Range:购买的价格范围。 Payment Mode:支付方式(信用卡、借记卡、UPI、EMI等)。 Purchase Frequency:购买频率,表示顾客购买笔记本电脑的频率。 Satisfaction Rating:顾客满意度评分,用于衡量顾客对购买体验的满意程度。

2025-01-24

外卖配送时间影响因素,食品配送时间预测数据集,可用于机器学习,数据分析

关键字段 Delivery_person_Age:配送员的年龄 Delivery_person_Ratings:客户对配送员的评分 Restaurant_latitude:餐厅地理位置的纬度坐标。 Restaurant_longitude:餐厅地理位置的经度坐标。 Delivery_location_latitude:订单送达地点的纬度坐标。 Delivery_location_longitude:订单送达地点的经度坐标。 Type_of_order:订购食品的类别,用于分析准备时间。 Type_of_vehicle:用于配送的交通工具 Temperature:配送期间的环境温度 Humidity:配送期间的大气湿度水平 Precipitation:降雨或降雪量 Weather_description:天气的文字描述(如晴天、多云、暴风雨),为旅行条件提供背景信息。 Traffic_Level:配送期间的交通拥堵程度(如低、中、高) Distance (km):餐厅与配送地点之间的计算距离(公里) TARGET:目标变量,表示模型预测的配送时间(分钟)

2025-01-24

地震数据集,20世纪最强地震数据集,包含时间地点、里氏震级、伤亡人数,可以用于数据分析,相关性分析,机器学习

该数据集提供了关于20世纪发生的最强地震的信息,包括地震发生的具体国家、年份、里氏震级强度以及伤亡人数。此数据集旨在为研究人员、历史学家和地震学爱好者提供宝贵的历史地震数据,以分析地震模式、评估灾害影响并研究防灾措施。 关键字段 Country:地震发生的国家。 Year:地震发生的年份。 Magnitude:地震的里氏震级(Richter scale),用于衡量地震的能量释放。 Casualties:地震造成的伤亡人数,包括死亡和受伤人数。

2025-01-23

血细胞图片数据集,癌症检测血液细胞图像数据,白血病检测显微血液细胞数据集(包含高分辨率的显微镜下血液细胞图像)可以用于白血病诊断模型训练,图像识别,癌症检测(5000个图像数据,每类1000张)

该数据集包含高分辨率的显微镜下血液细胞图像,对于自动诊断系统至关重要。每张图像在标准化条件下捕捉详细的细胞形态,专注于正常和异常的血细胞。此数据集旨在支持白血病(如急性髓系白血病AML和急性淋巴细胞白血病ALL)的自动化检测与研究。 异常细胞类型 Myeloblasts (AML指标): 大小:12-20微米 形状:圆形或椭圆形 特征:核质比高,可见核仁 描述:这些细胞是急性髓系白血病(AML)的关键指标,其显著特点是细胞较大,具有明显的核仁和高比例的细胞核对细胞质。 Lymphoblasts (ALL指标): 大小:10-14微米 特征:均质染色质,细胞质较少 描述:这些细胞是急性淋巴细胞白血病(ALL)的关键指标,通常较小,具有均匀分布的染色质和相对少量的细胞质。 正常细胞类型 (成熟淋巴细胞):小而圆的细胞,有浓缩的染色质和少量细胞质。 (中性粒细胞):多叶核,丰富的粉红色颗粒状细胞质。 (单核细胞):较大的细胞,有不规则形状的细胞核和灰色细胞质。 (嗜酸性粒细胞):含有大量橙红色颗粒的细胞质,双叶或多叶核。 (嗜碱性粒细胞):含有深紫色颗粒的细胞质,通常是三叶核

2025-01-23

人力资源综合数据集,HR数据集,企业员工信息数据,特征可用于数据分析、机器学习(包含员工的人口统计、部门、是否离职、学历、婚姻、薪资、地点、族裔等)

该数据集是一个面向人力资源专业人士、数据分析员和机器学习爱好者的综合性资源。它包含了匿名化后的员工数据,旨在帮助组织分析员工流失率、绩效指标和员工队伍的人口统计特征。此数据集特别适用于探索性数据分析、预测建模以及仪表板创建。 特征(数据集中各列) EmployeeID:每个员工的唯一标识符。 Age:员工年龄。 Department:员工所属部门(如:销售部、技术部、人力资源部)。 Job Role:员工在其部门内的具体职位。 Attrition:指示员工是否已离开公司(是/否)。 Tenure:员工在公司工作的月数。 Education Level:最高学历(如:学士、硕士、博士)。 Marital Status:婚姻状况(如:单身、已婚、离婚)。 Salary:员工薪资。 State:员工工作所在的州。 Ethnicity:员工族裔。 Risk Level:员工被分类为高风险、有风险、低风险或无风险。 Services Subscribed:指示员工是否订阅了各种服务(如电话服务、技术支持等)。

2025-01-23

电子商务交易记录数据集,电商数据,可以用于数据分析、机器学习、趋势分析

该数据集包含全面的电子商务交易记录,涵盖了客户详情、地理坐标、订单具体信息以及交付指标等多个方面。此外,还包括财务指标,如订单折扣、销售额、数量和利润,为分析提供了全方位的视角。 内容描述 客户详情 Customer_Name:客户姓名 Country:客户所在国家 Region:客户所在地区(如:北美、欧洲) State:客户所在州/省 City:客户所在城市 地理坐标 Latitude:纬度坐标 Longitude:经度坐标 订单具体信息 Order_ID:订单唯一标识符 Category:产品类别(如:电子产品、家具等) Product_Name:产品名称 Shipping_Type:发货类型(如:标准运输、加急运输) 交付指标 Ship_Date:发货日期 Delivery_Status:交付状态(如:已发货、已送达、延迟等) Scheduled_Shipment_Days:计划发货天数 Real_Shipment_Days:实际发货天数 财务指标 Order_Discount:订单折扣 Sales:销售额 Quantity:销售数量 Profit:利润

2025-01-23

员工流失预测数据集,企业员工离职数据集,可用于机器学习,预测建模(包括多种人口统计、工作相关和绩效指标)

该数据集包含10,000名员工的数据,旨在用于预测建模和分析员工流失情况。它包括多种人口统计、工作相关和绩效指标,以帮助理解导致员工离职的因素。 此数据集适用于多种分析任务,特别是: 员工流失预测:通过分析各种因素,预测哪些员工更有可能离职。 因素分析:识别影响员工流失的关键因素,如工作满意度、绩效评估、加班情况等。 策略制定:基于数据分析结果,制定减少员工流失的策略,提高员工保留率。

2025-01-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除