一、最小堆(最大堆)
package com.ldl.algorithms.Exercise;
/*************************************************************************
* Compilation: javac MinPQ.java
* Execution: java MinPQ < input.txt
*
* Generic min priority queue implementation with a binary heap.
* Can be used with a comparator instead of the natural order.
*
* % java MinPQ < tinyPQ.txt
* E A E (6 left on pq)
*
* We use a one-based array to simplify parent and child calculations.
*
*************************************************************************/
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
import com.ldl.algorithms.StdIn;
import com.ldl.algorithms.StdOut;
/**
* The <tt>MinPQ</tt> class represents a priority queue of generic keys.
* It supports the usual <em>insert</em> and <em>delete-the-minimum</em>
* operations, along with methods for peeking at the maximum key,
* testing if the priority queue is empty, and iterating through
* the keys.
* <p>
* The <em>insert</em> and <em>delete-the-minimum</em> operations take
* logarithmic amortized time.
* The <em>min</em>, <em>size</em>, and <em>is-empty</em> operations take constant time.
* Construction takes time proportional to the specified capacity or the number of
* items used to initialize the data structure.
* <p>
* This implementation uses a binary heap.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*/
public class MinPQ<Key> implements Iterable<Key> {
private Key[] pq; // store items at indices 1 to N
private int N; // number of items on priority queue
private Comparator<Key> comparator; // optional comparator
/**
* Create an empty priority queue with the given initial capacity.
*/
public MinPQ(int initCapacity) {
pq = (Key[]) new Object[initCapacity + 1];
N = 0;
}
/**
* Create an empty priority queue.
*/
public MinPQ() { this(1); }
/**
* Create an empty priority queue with the given initial capacity,
* using the given comparator.
*/
public MinPQ(int initCapacity, Comparator<Key> comparator) {
this.comparator = comparator;
pq = (Key[]) new Object[initCapacity + 1];
N = 0;
}
/**
* Create an empty priority queue using the given comparator.
*/
public MinPQ(Comparator<Key> comparator) { this(1, comparator); }
/**
* Create a priority queue with the given items.
* Takes time proportional to the number of items using sink-based heap construction.
*/
public MinPQ(Key[] keys) {
N = keys.length;
pq = (Key[]) new Object[keys.length + 1];
for (int i = 0; i < N; i++)
pq[i+1] = keys[i];
for (int k = N/2; k >= 1; k--)
sink(k);
assert isMinHeap();
}
/**
* Is the priority queue empty?
*/
public boolean isEmpty() {
return N == 0;
}
/**
* Return the number of items on the priority queue.
*/
public int size() {
return N;
}
/**
* Return the smallest key on the priority queue.
* Throw an exception if no such key exists because the priority queue is empty.
*/
public Key min() {
if (isEmpty()) throw new RuntimeException("Priority queue underflow");
return pq[1];
}
// helper function to double the size of the heap array
private void resize(int capacity) {
assert capacity > N;
Key[] temp = (Key[]) new Object[capacity];
for (int i = 1; i <= N; i++) temp[i] = pq[i];
pq = temp;
}
/**
* Add a new key to the priority queue.
*/
public void insert(Key x) {
// double size of array if necessary
if (N == pq.length - 1) resize(2 * pq.length);
// add x, and percolate it up to maintain heap invariant
pq[++N] = x;
swim(N);
assert isMinHeap();
}
/**
* Delete and return the smallest key on the priority queue.
* Throw an exception if no such key exists because the priority queue is empty.
*/
public Key delMin() {
if (N == 0) throw new RuntimeException("Priority queue underflow");
exch(1, N);
Key min = pq[N--];
sink(1);
pq[N+1] = null; // avoid loitering and help with garbage collection
if ((N > 0) && (N == (pq.length - 1) / 4)) resize(pq.length / 2);
assert isMinHeap();
return min;
}
/***********************************************************************
* Helper functions to restore the heap invariant.
**********************************************************************/
private void swim(int k) {
while (k > 1 && greater(k/2, k)) {
exch(k, k/2);
k = k/2;
}
}
private void sink(int k) {
while (2*k <= N) {
int j = 2*k;
if (j < N && greater(j, j+1)) j++;
if (!greater(k, j)) break;
exch(k, j);
k = j;
}
}
/***********************************************************************
* Helper functions for compares and swaps.
**********************************************************************/
private boolean greater(int i, int j) {
if (comparator == null) {
return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
}
else {
return comparator.compare(pq[i], pq[j]) > 0;
}
}
private void exch(int i, int j) {
Key swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
}
// is pq[1..N] a min heap?
private boolean isMinHeap() {
return isMinHeap(1);
}
// is subtree of pq[1..N] rooted at k a min heap?
private boolean isMinHeap(int k) {
if (k > N) return true;
int left = 2*k, right = 2*k + 1;
if (left <= N && greater(k, left)) return false;
if (right <= N && greater(k, right)) return false;
return isMinHeap(left) && isMinHeap(right);
}
/***********************************************************************
* Iterators
**********************************************************************/
/**
* Return an iterator that iterates over all of the keys on the priority queue
* in ascending order.
* <p>
* The iterator doesn't implement <tt>remove()</tt> since it's optional.
*/
public Iterator<Key> iterator() { return new HeapIterator(); }
private class HeapIterator implements Iterator<Key> {
// create a new pq
private MinPQ<Key> copy;
// add all items to copy of heap
// takes linear time since already in heap order so no keys move
public HeapIterator() {
if (comparator == null) copy = new MinPQ<Key>(size());
else copy = new MinPQ<Key>(size(), comparator);
for (int i = 1; i <= N; i++)
copy.insert(pq[i]);
}
public boolean hasNext() { return !copy.isEmpty(); }
public void remove() { throw new UnsupportedOperationException(); }
public Key next() {
if (!hasNext()) throw new NoSuchElementException();
return copy.delMin();
}
}
/**
* A test client.
*/
public static void main(String[] args) {
MinPQ<String> pq = new MinPQ<String>();
while (!StdIn.isEmpty()) {
String item = StdIn.readString();
if (!item.equals("-")) pq.insert(item);
else if (!pq.isEmpty()) StdOut.print(pq.delMin() + " ");
}
StdOut.println("(" + pq.size() + " left on pq)");
}
}
二、索引最小堆(索引最大堆)
package com.ldl.algorithms.Exercise;
/*************************************************************************
* Compilation: javac IndexMinPQ.java
* Execution: java IndexMinPQ
*
* Indexed PQ implementation using a binary heap.
*
*********************************************************************/
import java.util.Iterator;
import java.util.NoSuchElementException;
import com.ldl.algorithms.StdOut;
public class IndexMinPQ<Key extends Comparable<Key>> implements Iterable<Integer> {
private int N; // number of elements on PQ
private int[] pq; // binary heap using 1-based indexing
private int[] qp; // inverse of pq - qp[pq[i]] = pq[qp[i]] = i
private Key[] keys; // keys[i] = priority of i
public IndexMinPQ(int NMAX) {
keys = (Key[]) new Comparable[NMAX + 1]; // make this of length NMAX??
pq = new int[NMAX + 1];
qp = new int[NMAX + 1]; // make this of length NMAX??
for (int i = 0; i <= NMAX; i++) qp[i] = -1;
}
// is the priority queue empty?
public boolean isEmpty() { return N == 0; }
// is k an index on the priority queue?
public boolean contains(int k) {
return qp[k] != -1;
}
// number of keys in the priority queue
public int size() {
return N;
}
// associate key with index k
public void insert(int k, Key key) {
if (contains(k)) throw new NoSuchElementException("item is already in pq");
N++;
qp[k] = N;
pq[N] = k;
keys[k] = key;
swim(N);
}
// return the index associated with a minimal key
public int minIndex() {
if (N == 0) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
// return a minimal key
public Key minKey() {
if (N == 0) throw new NoSuchElementException("Priority queue underflow");
return keys[pq[1]];
}
// delete a minimal key and returns its associated index
public int delMin() {
if (N == 0) throw new NoSuchElementException("Priority queue underflow");
int min = pq[1];
exch(1, N--);
sink(1);
qp[min] = -1; // delete
keys[pq[N+1]] = null; // to help with garbage collection
pq[N+1] = -1; // not needed
return min;
}
// return key associated with index k
public Key keyOf(int k) {
if (!contains(k)) throw new NoSuchElementException("item is not in pq");
else return keys[k];
}
// change the key associated with index k
public void change(int k, Key key) {
changeKey(k, key);
}
// change the key associated with index k
public void changeKey(int k, Key key) {
if (!contains(k)) throw new NoSuchElementException("item is not in pq");
keys[k] = key;
swim(qp[k]);
sink(qp[k]);
}
// decrease the key associated with index k
public void decreaseKey(int k, Key key) {
if (!contains(k)) throw new NoSuchElementException("item is not in pq");
if (keys[k].compareTo(key) <= 0) throw new RuntimeException("illegal decrease");
keys[k] = key;
swim(qp[k]);
}
// increase the key associated with index k
public void increaseKey(int k, Key key) {
if (!contains(k)) throw new NoSuchElementException("item is not in pq");
if (keys[k].compareTo(key) >= 0) throw new RuntimeException("illegal decrease");
keys[k] = key;
sink(qp[k]);
}
// delete the key associated with index k
public void delete(int k) {
if (!contains(k)) throw new NoSuchElementException("item is not in pq");
int index = qp[k];
exch(index, N--);
swim(index);
sink(index);
keys[k] = null;
qp[k] = -1;
}
/**************************************************************
* General helper functions
**************************************************************/
private boolean greater(int i, int j) {
return keys[pq[i]].compareTo(keys[pq[j]]) > 0;
}
private void exch(int i, int j) {
int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;
qp[pq[i]] = i; qp[pq[j]] = j;
}
/**************************************************************
* Heap helper functions
**************************************************************/
private void swim(int k) {
while (k > 1 && greater(k/2, k)) {
exch(k, k/2);
k = k/2;
}
}
private void sink(int k) {
while (2*k <= N) {
int j = 2*k;
if (j < N && greater(j, j+1)) j++;
if (!greater(k, j)) break;
exch(k, j);
k = j;
}
}
/***********************************************************************
* Iterators
**********************************************************************/
/**
* Return an iterator that iterates over all of the elements on the
* priority queue in ascending order.
* <p>
* The iterator doesn't implement <tt>remove()</tt> since it's optional.
*/
public Iterator<Integer> iterator() { return new HeapIterator(); }
private class HeapIterator implements Iterator<Integer> {
// create a new pq
private IndexMinPQ<Key> copy;
// add all elements to copy of heap
// takes linear time since already in heap order so no keys move
public HeapIterator() {
copy = new IndexMinPQ<Key>(pq.length - 1);
for (int i = 1; i <= N; i++)
copy.insert(pq[i], keys[pq[i]]);
}
public boolean hasNext() { return !copy.isEmpty(); }
public void remove() { throw new UnsupportedOperationException(); }
public Integer next() {
if (!hasNext()) throw new NoSuchElementException();
return copy.delMin();
}
}
public static void main(String[] args) {
// insert a bunch of strings
String[] strings = { "it", "was", "the", "best", "of", "times", "it", "was", "the", "worst" };
IndexMinPQ<String> pq = new IndexMinPQ<String>(strings.length);
for (int i = 0; i < strings.length; i++) {
pq.insert(i, strings[i]);
}
// delete and print each key
while (!pq.isEmpty()) {
int i = pq.delMin();
StdOut.println(i + " " + strings[i]);
}
StdOut.println();
// reinsert the same strings
for (int i = 0; i < strings.length; i++) {
pq.insert(i, strings[i]);
}
// print each key using the iterator
for (int i : pq) {
StdOut.println(i + " " + strings[i]);
}
while (!pq.isEmpty()) {
pq.delMin();
}
}
}
三、堆排序
public class Heap {
public static void sort(Comparable[] pq) {
int N = pq.length;
for (int k = N/2; k >= 1; k--)
sink(pq, k, N);
while (N > 1) {
exch(pq, 1, N--);
sink(pq, 1, N);
}
}
/***********************************************************************
* Helper functions to restore the heap invariant.
**********************************************************************/
private static void sink(Comparable[] pq, int k, int N) {
while (2*k <= N) {
int j = 2*k;
if (j < N && less(pq, j, j+1)) j++;
if (!less(pq, k, j)) break;
exch(pq, k, j);
k = j;
}
}
/***********************************************************************
* Helper functions for comparisons and swaps.
* Indices are "off-by-one" to support 1-based indexing.
**********************************************************************/
private static boolean less(Comparable[] pq, int i, int j) {
return pq[i-1].compareTo(pq[j-1]) < 0;
}
private static void exch(Object[] pq, int i, int j) {
Object swap = pq[i-1];
pq[i-1] = pq[j-1];
pq[j-1] = swap;
}
// is v < w ?
private static boolean less(Comparable v, Comparable w) {
return (v.compareTo(w) < 0);
}
/***********************************************************************
* Check if array is sorted - useful for debugging
***********************************************************************/
private static boolean isSorted(Comparable[] a) {
for (int i = 1; i < a.length; i++)
if (less(a[i], a[i-1])) return false;
return true;
}
// print array to standard output
private static void show(Comparable[] a) {
for (int i = 0; i < a.length; i++) {
StdOut.println(a[i]);
}
}
// Read strings from standard input, sort them, and print.
public static void main(String[] args) {
String[] a = StdIn.readStrings();
Heap.sort(a);
show(a);
}
}
四、最小最大堆(最大最小堆),即双端堆。见前面的博文。
五、用最小堆和最大堆实现中位数查找。见前面博文。
六、查找最大的M个元素
这里要用最小堆来实现。为什么呢? 我们首先要创建一个容量为M的最小堆,当这个最小堆满时,容纳的是当前最大的M个元素,但是它们是以最小堆次序排列的,也就是堆顶为当面M个元素中的最小元素。当下一个新元素来到时,为了保证当前堆中的M个元素始终未当前最大的M个元素,我们应该要淘汰(删除)堆中的最小的那个元素,也就是最小堆的堆顶元素。所以,为了方便更新维护对,我们必须采用最小堆。
package com.ldl.algorithms.Exercise;
/*************************************************************************
* Compilation: javac TopM.java
* Execution: java TopM M < input.txt
* Dependencies: MinPQ.java Transaction.java StdIn.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/24pq/tinyBatch.txt
*
* Given an integer M from the command line and an input stream where
* each line contains a String and a long value, this MinPQ client
* prints the M lines whose numbers are the highest.
*
* % java TopM 5 < tinyBatch.txt
* Thompson 2/27/2000 4747.08
* vonNeumann 2/12/1994 4732.35
* vonNeumann 1/11/1999 4409.74
* Hoare 8/18/1992 4381.21
* vonNeumann 3/26/2002 4121.85
*
*************************************************************************/
import com.ldl.algorithms.StdIn;
import com.ldl.algorithms.StdOut;
public class TopM {
// Print the top M lines in the input stream.
public static void main(String[] args) {
int M = Integer.parseInt(args[0]);
MinPQ<Transaction> pq = new MinPQ<Transaction>(M+1);
while (StdIn.hasNextLine()) {
// Create an entry from the next line and put on the PQ.
String line = StdIn.readLine();
Transaction transaction = new Transaction(line);
pq.insert(transaction);
// remove minimum if M+1 entries on the PQ
if (pq.size() > M)
pq.delMin();
} // top M entries are on the PQ
// print entries on PQ in reverse order
Stack<Transaction> stack = new Stack<Transaction>();
for (Transaction transaction : pq)
stack.push(transaction);
for (Transaction transaction : stack)
StdOut.println(transaction);
}
}