自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

脑瓜凉的专栏

程序人生_困难下的坚持最珍贵.....

  • 博客(2664)
  • 资源 (54)
  • 问答 (4)
  • 收藏
  • 关注

原创 人工智能_CPU微调ChatGLM大模型_使用P-Tuning v2进行大模型微调_007_微调_002---人工智能工作笔记0102

这里的dev.json指的是,test_file测试数据,然后train_file也就是train.json指的是训练数据。我用的CPU所以没有添加NUM_GPUS,这个变量也是自己起名的,我用的默认的,官网提供的这个文件,然后修改的.这里注意我在/data/module建了两个文件夹,一个是train_output用来放训练后的输出模型的,现在还有langchain可以实现,扩展知识库,这个后面我们再说,我先用P-Tuning V2试试,这里我们先试着训练一下,我们用官方提供的训练数据进行训练.

2024-02-23 19:28:17 73

原创 人工智能_CPU微调ChatGLM大模型_理解_Prefix-Tuning微调原理_Prompt-Tuning微调原理_P-tuning微调原理_006_微调_001---人工智能工作笔记0101

上面是prompt-tuning 和p-tuning的区别,可以看到其实,一个就是仅仅添加训练后的向量提示词,一个就是,直接把prompt-tuning的提示词再进行使用BiLSTM和MLP进行编码,编码以后把编码后的提示词,直接融入到模型本身的参数权重中去,这样消耗算力就多.如果是一组固定的,可读的文字,或者自然语言,那么他对,结果的影响是非常大的,那么这个时候,一般用第二种 方法,softprompt,叫做连续prompt,这个就是向量了,就是向量空间优化出来的提示.

2024-02-23 10:58:04 392

原创 人工智能_CPU安装运行ChatGLM大模型_ChatGlm-6B_启动命令行对话_安装API调用接口_005---人工智能工作笔记0100

可以看到后台出现了结果,这是我们,使用curl 请求给出的结果,但是在我们的请求页面,却什么也没有返回,说明,还是慢吗?启动python3 api.py 的窗口中给出的,可以看到上面的截图,看到上面显示出来的情况.再去python3 api.py 就可以了,然后我们就可以先去用,命令行,使用curl。然后主要来看,如何使用api来调用呢,这样才可以,做自己的界面。大概还是慢的原因我们访问了,3次了,给出了2个结果,还是从。然后又等了10分钟可以看到,结果出来了,真的是...CPU就是很慢,等吧,慢死了..

2024-02-21 17:54:45 84

原创 快速清理_卸载docker_找到不用的进程_centos磁盘爆满_清理磁盘---Linux工作笔记071

rm -rf /var/lib/docker 删除docker文件就可以了.可以看到在/data/dict目录很大,里面的都可以删除。然后再去卸载docker,要不然,没有磁盘是卸载不了的。可以看到根据不用的结果进行删除。

2024-02-21 13:20:50 174

原创 人工智能_CPU安装运行ChatGLM大模型_安装清华开源人工智能AI大模型ChatGlm-6B_004---人工智能工作笔记0099

注意是修改cli_demo.py 和 web_demo2.py 这两个文件哈, 这两个文件需要修改,其他的我只是对应的刚刚备份的cpu版本,改成了cpu的版本内容而已.需要gcc的版本是11.3.0,这里我们先没有去安装,直接试试再说。上一节003节我们安装到最后,本来大模型都可以回答问题了,结果,然后把后面的原来的内容,改成.float() 就是cpu版本了.分别写成cpu,gpu,对应的是cpu和gpu的版本。可以看到这里有个CPU部署,可以看到说,要把。可以看到把上面的这个部分,修改成,下面的。

2024-02-20 11:07:51 84

原创 人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_003---人工智能工作笔记0098

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/ 有网速 但是不成功。可以看到执行:pip install -r requirements.txt -i https://mirror.baidu.com/pypi/simple 可以正常执行。pip install -r requirements.txt -i http://pypi.mirrors.opencas.cn/simple/ 不可以。

2024-02-19 23:59:04 114

原创 人工智能_PIP3安装使用国内镜像源_安装GIT_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_002---人工智能工作笔记0097

可以看到按照上面的步骤,我们给pip设置了软连接,然后配置了pip的config镜像源.首先去下载软件,到/data/soft ,可以用wget命令也可以自己用浏览器下载。执行配置以后,然后: 执行的时候报错了...唉,行吧,这里我应该不需要用git,参考上一步,上一个博文,去卸载吧,把python3卸载以后,然后重新安装一下。他们用git用来下载模型的,我都是手动的网络上下载的.好,下一节,来安装模型。可以看到又出现了,因为是国外镜像源,下载不下来,下面我们来切换一下国内源。

2024-02-19 17:04:21 399

原创 人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096

如果你想用8G内存,普通电脑安装就算了,装不上的,至少32G内存,才能安装最小的,并且,安装不会顺利可能出现,多次安装不成功的情况,需要多次尝试,所以最好用AI服务器吧,或者租用在线的AI服务器,AI服务器安装版,那个博文里有推荐AI服务器租用.再把这个python的安装包,复制到/usr/local下面去,然后进入/usr/loal去看看。然后我们再去之前解压到/data/module/Python-3.10.8这个文件夹中,然后再去。然后再去安装,走到/openssl-1.1.1目录中,然后,执行。

2024-02-19 13:11:42 431

原创 vmware虚拟机无法联网_Failed to start LSB: Bring up/down networking_无法设置IP_和MAC地址---Linux工作笔记070

说明一下解决方法,非常简单,就是如果你的VMware,我这里是centos7.9的一个镜像,是从别的地方复制过来的,那么,启动的时候,会让你选择,我已移动虚拟机,还是让你选择,我已复制虚拟机。我也遇到了这个问题,只不过,我直接把虚拟机删除了,然后又打开了一遍,这次选择,我已移动虚拟机。然后再去/etc/sysconfig/network-scripts/ifcfg-ens3。如果,碰到了通过 移动虚拟机 选项也不能解决的可以,尝试上面的解决方法.一定要注意,选择,我已移动虚拟机。编辑这个文件就可以了。

2024-02-08 15:48:02 42

原创 Ruoyi-Cloud-Plus_Nacos配置服务漏洞CVE-2021-29441_官方解决方法以及_修改源码解决---SpringCloud工作笔记199

Nacos是Alibaba的一个动态服务发现、配置和服务管理平台。修改方法是:在Nacos项目的application.properties文件中,添加一下的配置。这个时候:再去其他服务中修改配置文件,主要是nacos的注册部分,除了添加注册地址,还有,加上。配置以后再启动,然后再去,访问之前的api就会显示403,没问题了.这个时候,启动其他服务以后,就会出现注册不到nacos的情况。拦截一下地址,当访问地址是这个地址的时候,直接,拦截器中返回。上面的情况.会通过这个接口就可以添加用户了。

2024-02-02 16:07:40 348

原创 利用nginx替换Docker内部程序_静态资源_实现自定义背景--nginx工作笔记008

当在这个地址,访问img这个目录的时候,也就是,我们打开对应的系统,然后用F12,去查看要替换的图片的地址,比如,nginx所在的机器如果是:192.168.1.112。首先,在nginx中配置,使用location /表示当访问9003的时候定向到后面的地址,也就是对应的你要访问的系统地址,然后再去看。因为有个程序是打包的Docker镜像,那么问题就来了,我想修改登录页面上的一个图片,如果。我们定位到data目录就可以了,这个时候,他会自动去img去找,因为,你不想再去修改程序了,那么怎么办?

2024-02-02 12:01:42 187

原创 MobaXterm远程操控_通过一台公网IP跳转操控多台机器_只有一台公网IP同时操控多台机器_进行大数据集群环境部署_复制已有连接---Linux工作笔记069

说一下背景,客户给了6台机器,但是,只有一台是公网的IP地址,这个时候怎么弄呢?这里填写session的名字,自定义就可以,然后上面填写远程连接地址。然后这样就把这台公网IP的机器连接上了,就可以进行远程操控了,然后。就表示,连接上服务器以后,然后执行这个命令,连接其他服务器。再看看如何通过这个公网IP机器,来跳转其他机器。execute command 执行命令。首先连接上一台,这个公网IP的地址,注意需要这样设置就可以了,主要是设置。

2024-02-02 11:40:41 40

原创 Hbase-2.4.11_hadoop-3.1.3集群_大数据集群_SSH修改默认端口22为其他端口---记录025_大数据工作笔记0185

在以下目录中:/opt/module/hadoop-3.1.3/bin/myhadoop.sh。需要修改/opt/module/hbase-2.4.11/conf/hbase-env.sh。在以下目录中:/opt/module/hadoop-3.1.3/bin/kfk.sh。在以下目录中:/opt/module/hadoop-3.1.3/bin/xsync。在以下目录中:/opt/module/hadoop-3.1.3/bin/zk.sh。中,找到对应的hadoop-env.sh文件。

2024-01-29 18:40:23 357

原创 离线安装nginx_银河麒麟系统_nginx报错_503_500 Internal Server Error----nginx工作笔记007

chmod 777 /opt/module/test_web 就可以了,然后再去访问就不会报错了,还有。然后关于离线安装nginx,尝试了一下如果把之前安装过的nginx,直接打包,发到另一台机器上,然后。如果报这个错误,意思就是,对于nginx.conf文件中指定的,文件夹没有权限。503的错误都可以这样解决。

2024-01-29 13:28:52 102

原创 麒麟系统安装minio_centos8.0安装最新minio_离线安装minio并设置权限_创建桶---minio工作笔记001

注意,要使用chmod 777 /opt/module/minio 给刚刚创建的minio文件夹赋权限。然后我们再在/opt/module/minio文件夹中创建,data文件夹,创建log文件夹,然后进入minio文件夹,然后把我们刚刚上传到/opt/soft中的minio文件,复制到。配置minio的,用户名密码,当然你也可以不配置,如果不配置的话,默认的。可以看到有可以访问的端口,然后去浏览器访问登录就可以了。可以看到对应的页面,然后登录,用上面设置的用户名密码。首先去到官网去下载minio,然后。

2024-01-29 11:53:37 162

原创 使用DBSyncer同步Oracle11g数据到Mysql5.7中_实现全量数据同步和增量数据实时同步_操作过程---数据同步之DBSyncer工作笔记007

之前都是用mysql和Postgresql之间进行同步的,已经实现了数据的实时同步,现在要实现Oracle数据库到Mysql数据库的全量,以及增量同步.因为之前配置的不对,这里架构名写成了orcl,所以导致,虽然能连接上,但是,在进行数据同步的时候,看不到表,所以这里说一下如何进行连接。架构名指的就是数据库名称,不要写错了,这里并不是orcl,这里是数据库名称。这里,首先选择驱动,然后选择类型,选择Oracle,然后这里填写一个名称。添加完驱动,选择全量同步,然后选择对应的表,添加上主键,就可以了。

2024-01-24 11:41:08 267

原创 使用Navicat在Oracle和Mysql之间同步数据_连接Oracle11g报错_Oracle library is not loaded_ORA-28547:conn---数据库工作笔记019

然后这个时候,打开新生成的Navicat.exe点击注册,然后,再去优化工具,点击第一个generate,然后生成一串号码,然后把号码,放到Navicat对应的框中,然后点下一步,然后再去把Navicat15显示的一串码,放到优化工具中点击第二个generate按钮,然后又生成了一串码,把这串码放到Navicat下面的框中,然后点击注册就可以成功使用了.重要的一步,就是先关闭Navicat,然后再去打开,这个时候,再去连接Oracle就可以连接上了.走到这个Navicat界面,找到工具,选项,然后。

2024-01-24 10:21:41 154

原创 人工智能_机器学习095_数据降维概念_数据降维方法_主成分分析PCA_线性判别LDA_非负矩阵分解NMF_流行学习ISOMap LLE---人工智能工作笔记0135

可以看到我们在分析数据的时候,我们希望减少需要分析的数据特征,但是同时,还要尽量的减少,特征包含信息的损失,那么,对于,相关性特别强的变量。然后我们继续看,数据形式多种多样,维度也就是数据的特征也很多,那么怎么样进行数据降维,其中,我们之前都说是的,进行属性选择,也就是选择。然后我们再来看一下,上图中,三维的图形中,可以看到对应的,下面的圈圈,就是三维世界的投影,我们要抓取的就是,这个投影的数据,也就是。重要的数据,去掉正相关的数据,去掉,相关性高的数据,这就是属性选择,然后。

2024-01-17 15:06:46 59

原创 人工智能_机器学习094_数据相关性概念_数据相关性计算方法_皮尔逊相关系数_计算数据相关性作用_数据提纯数据质量_决定算法精确性_代码演示---人工智能工作笔记0134

df = pd.DataFrame(np.random.randint(0,150,size=(50,3)),columns=['Python','En','Chinese']) 使用DataFrame,随机从0到150数字中生成,50行,3列数据,例如,如果数据集包含"A", "B", "C"三列数据,那么调用df.corr()将会返回一个3x3的矩阵,其中的每个元素(i, j)表示第i列和第j列数据之间的相关系数。这里要知道,算法再厉害,得到的结果,也不会超过所提供的数据本身的限制,这一点要明确。

2024-01-08 20:09:44 382

原创 人工智能_机器学习093_评价汽车是否值得买进行聚类_基于密度的聚类算法总结_KMeans聚类_DBSCAN聚类_分层聚类_连接性约束---人工智能工作笔记0132

然后对于非欧几何数据,需要使用连接性约束,让聚类的时候,在同一层面上进行,聚类也就是说,在三维,多维空间中,我们可以使用DBSCAN聚类和分层聚类来实现上面的问题,来评价一个车是否值得购买。然后对于密度聚类,他的两组数据之间的距离的计算方法可以看到有。可以看到它的原理就是,将按照指定距离规则计算的,点,进行分类。聚类要在同一个维度空间层面进行聚类,这样才不会乱.然后它的参数每个参数的意思,我们之前详细说明了。可以看到它是基于密度的,具体原理看之前的博客。3中,还有一种是基于簇内方差进行计算的。

2024-01-06 11:33:00 392

原创 人工智能_机器学习092_使用三维瑞士卷数据_利用分层聚类算法进行瑞士卷数据三维聚类---人工智能工作笔记0132

a3.scatter(X[:,0],X[:,1],X[:,2],c=y_) 我们指定图的x,y,z数据轴,然后指定,数据分类 画出散点图。a3.scatter(X[:,0],X[:,1],X[:,2],c=y_) 我们指定图的x,y,z数据轴,然后指定,数据分类 画出散点图。a3.scatter(X[:,0],X[:,1],X[:,2],c=y_) 我们指定图的x,y,z数据轴,然后指定,数据分类 画出散点图。a3.scatter(X[:,0],X[:,1],X[:2],c=y_) 设置x,y,z轴。

2024-01-05 22:01:22 1995 2

原创 人工智能_机器学习091_使用三维瑞士卷数据_KMeans聚类算法进行瑞士卷数据聚类---人工智能工作笔记0131

X,y=make_swiss_roll(n_samples=1500,noise=0.05) 通过瑞士卷数据模型,生成1500个数据点,设置噪声0.05。X,y=make_swiss_roll(n_samples=1500,noise=0.05) 通过瑞士卷数据模型,生成1500个数据点,设置噪声0.05。,2],c=y) 然后我们画散点图,可以看到指定x,y,z坐标 然后开始画图。a3.scatter(X[:,0],X[:,1],X[:,2],c=y_) 然后进行指定,x,y,z轴进行画图。

2024-01-05 13:29:22 1082

原创 人工智能_机器学习090_分层聚类算法的概念原理和参数说明---人工智能工作笔记0130

可以看到当考虑聚类效率的时候,我们选择的是平面聚类算法,之前我们用的KMeans就是一种平面聚类算法,平面聚类存在潜在问题,不够结构化 层次聚类会更好。首先,把离得比较近的,可以看到上面 几个离得近的红点 算为了一类,然后紫色的点离得比较近,算为了一类,然后绿色的点离得比较近,又算为了一类,然后。SingleLinkage这个计算距离的算法,他是计算两个点之间最小的距离做为依据,把距离最小的组合在一起,比如上面画的短线。然后我们再来看,在分层聚类中的,两个计算距离的方法,可以看到首先是。

2024-01-04 10:19:15 574

原创 人工智能_机器学习089_DBSCAN聚类案例_DBSCAN聚类算法效果展示_使用轮廓系数来评分DBSCAN效果---人工智能工作笔记0129

dbscan = DBSCAN(eps = 0.2,min_samples =3) 我们指定半径是0.2 然后每个圆圈至少是3个数据就可以归为一类。y_ =dbscan.labels_ 然后得到结果 ,注意这里不需要进行predict,因为fit直接就相当于分类了。因为半径太大,全部划分为一类了对吧,因为可以看到坐标一共才2对吧,我们指定半径是2,就全部归为一类了。可以看到有4类对吧,我们希望分成3类对吧,可以看到紫色的部分,这个其实就是异常值了。然后我们画图的时候,我们不要画出这个离群点来,我们看看。

2024-01-04 10:14:09 596

原创 RuoYi-Cloud-Plus使用minio进行文件上传图片后无法预览解决_修改minio配置minio桶权限---SpringCloud工作笔记198

在文件管理的位置,发现刚刚上传的图片文件,会显示 预览图片失败 后来经过多方查看,发现是minio的配置的问题。可以看到首先登录RuoYi-Cloud-Plus系统然后,打开文件管理页面可以看到,当上传了图片文件以后。登录以后,选中左侧Buckets,可以看到有自己用的桶,找到以后点击打开。显示文件展示中,文件预览失败,那么这个时候,去修改minio的配置。可以看到,点击配置管理,这里我们启用的是minio对吧。默认是没有配置的这个时候,是允许下载,但不允许预览的.

2024-01-03 15:29:40 803 2

原创 人工智能_机器学习088_DBSCAN聚类案例_KMeans聚类算法效果展示---人工智能工作笔记0128

from matplotlib.colors import ListedColormap 导入颜色列表包。plt.scatter(X[:,0],X[:,1],c=y_,cmap=cmap) 对吧指定上。plt.figure(figsize=(5,5)) 设置一下画布的宽度高度。kmeans = KMeans(n_clusters=3) 我们分成三类。可以看到聚类以后的效果,使用KMeans可以看到效果不是很好对吧。y_ = kmeans.predict(X) 进行数据预测。

2024-01-03 10:41:16 525 2

原创 人工智能_机器学习087_DBSCAN聚类案例_聚类数据创建---人工智能工作笔记0127

plt.scatter(X[:,0],X[:,1],c=y) 从X中获取第第一列做为x轴,获取第二列做为y轴,三行,颜色,就是y的值,y是0,1 也就是y有两种颜色对吧。然后我们再来看一下这个centers这个参数,可以看到这个可以是类别对吧,也可以指定一个圆心,当填写int的时候,表示把数据分成几类,我们了可以看到现在对应的上面的数据有1000个点,然后下面的是500个点,一共1500个点,有三类数据。0,1那么再来一类数据,我们希望他是2对吧,这样就0,1,2这三类数据了。

2024-01-03 10:11:38 581

原创 人工智能_机器学习086_DBSCAN算法原理_以及参数详解_聚类过程详细可视化展现---人工智能工作笔记0126

eps的默认值是0.5 他表示的其实就是,我们选择了一个样本点,容纳后围绕这个样本点,半径默认是0.5来画圆,这时候,我们去配置这个值,eps配置过大,那么就会有很多数据被框定到这个圆里,对应的分类的,类别数,到时候就会减少,如果这个值配置的很小,那么就会有很少的。所以这个min_samples这个参数实际上指的是密度,设置的值越大,那么,在eps,也就是圆大小一定的情况下,产生的分类就越少。是因为,我们设置的,在半径是eps是1.0的这个圆中,只要是,数据点最少是1个,那么就可以归为一类对吧。

2024-01-02 15:57:43 1500

原创 人工智能_机器学习085_DBSCAN算法介绍_具有噪声基于密度的聚类_基于密度的空间聚类方法---人工智能工作笔记0125

可以仔细看看上面的文字说的很清楚了,对于一团数据,传统数据用KMeans聚类比较好,对于不规则的,环形的,用DBSCAN比较好,他可以基于密度计算,把密度大的数据放到一块做为一类。那么如果在指定半径内有足够多的样本点,那么就,移动这个圆的圆心到这个内部的样本点中,继续的去圈附近的其他样本点,一直这样重复, 等,不停的变化圆心,所圈到的,样本点。然后我们再看一下解释,可以看到,DBSCAN的原理就是 在众多样本点钟随机选中一个样本点,围绕这个样本点画一个圆,然后我们规定这个圆里面应该最少包含的样本点,

2024-01-02 10:44:07 1027

原创 人工智能_机器学习084_使用聚类算法_提取图片主要颜色_对图片进行聚类提取特征_对图片进行压缩---人工智能工作笔记0124

X = img.reshape(-1,3) 经过对imgreshape以后,就变成了16384个像素,每个像素有3个值对应RGB了 其实就是原来的宽高相乘就是128*128=16384个像素,一个图片有这么多像素,然后每个像素有3个通道,对应RGB,所以经过reshape以后,变成了二维的了,行是有16384个像素,列是3个,每行3个对应RGB ,相当于每行代表一个像素点。因为我们聚类算法KMeans使用的参数,都是,向量点对吧,都是2维的,但是,现在我们的img,给出的却是3维的对吧。

2023-12-29 11:42:21 1154

原创 人工智能_机器学习083_聚类评价指标_调整兰德系数_算法公式原理解析_手写代码使用兰德系数对聚类结果评分---人工智能工作笔记0123

a表示在C中被划分为同一类,也就是,比如一组数据实际被分为了3类,那么a,就表示 在C这种实际划分为比如3类,中的 划分为同一簇的实例的数量, 也就是实际C这种划分,被划分为同一簇的数据的数量。比如一组数据,实际被划分为3类,这就是C,这种实际划分情况,那么3类就有3个簇,那么a就表示在 这3个簇,比如c,d,e 这3个簇 中,归属于c这一个簇的数据的数据量。b表示在C中被划分为不同类别,在K中被划分为不同簇的实例的数据量 比如一个数据在C中被划分到了c簇,在K中被划分到了d簇对吧,这样的数据的数量。

2023-12-29 08:42:54 613

原创 人工智能_机器学习082_聚类评价指标_手写代码_使用轮廓系数算法_找出最佳类别数目---人工智能工作笔记0122

plt.scatter(range(2,7)[index],scores[index],color='red',s=50) 然后我们使用散点图,来用range(2,7)[index] 用这个最大类别的个数的做为x轴,用scores[index] 最大分数作为y轴,然后用红色画,然后宽度是50。plt.plot(range(2,7),scores,color='green') 绘图,汇出折线图,使用range(2,7),做为X轴,使用scores,做为y轴。

2023-12-28 10:43:08 848

原创 人工智能_机器学习081_聚类评价指标_轮廓系数_公式理解---人工智能工作笔记0121

a,表示 某个样本 和 它所在的簇内的,其他样本的平均距离, 其实聚类分的好不好,主要是,我们希望一个类别,也就是一个簇中,的数据点,帖的越紧密越好对吧.b.某个样本 与其他簇内样本的平均距离, 这个其实就是说簇 与 簇之间的距离越远越好对吧,就表示分的越开 对吧。假如当a=0 ,那么这个时候 S的值最大对吧,因为 分子最大 对吧,所以轮廓系数公式 的值越大越好。我们之前做分类的时候,用的是准确率对吧,然后做回归问题的时候,用均方误差.然后我们再来看,那么对于数据来说,我们分成几类比较合适呢,怎么衡量呢?

2023-12-28 10:27:49 505

原创 人工智能_机器学习080_KMeans聚类算法原理和流程_KMeans损失函数_随机聚类中心_对异常值_初始值敏感---人工智能工作笔记0120

3.然后我们开始计算样本点到簇中心的距离,比如如果离着蓝色的x近,就把点标记成蓝色,如果离红色的x近,就把点标记成红色, 这样就初步分成了两类, 然后再计算各个簇中到蓝x的平均距离和 所有红点到红x的平均距离, 根据平均距离移动簇中心,也就是移动红x和蓝x 对吧 如c图。4.移动簇中心以后,再去计算每个簇中的样本点到簇中心,也就是分别到红x 和 蓝x的距离,然后获取平均值,然后再去移动簇中心,可以看到,如图d。我们得到平均值以后,再去移动这个簇中心,然后让簇中心到,这个簇中的点的距离变短,

2023-12-27 16:04:41 1181

原创 人工智能_机器学习079_聚类算法的划分标准_相似度算法_余弦相似度_欧氏距离_闵可夫斯基距离_曼哈顿距离_切比雪夫距离_计算多维空间向量距离的_各种算法盘点---人工智能工作笔记0119

d(X,Y) = 根号p |x1-y1|的p次方+|x2-y2|的p次方...对吧,这样做的目的就是,因为我们知道p次方,是指数型扩大的,那么,如果比如:x1和y1之间的距离很大,那么p接近无穷次方以后,会让他更大。然后对于曼哈顿距离可以看到,右上方的图形,其实就是,两个点之间的绝对值,其实就是,比如司机从a到b点,但是中间有楼栋挡住了,不能直接过去。在三角函数中,余弦函数的值域是[-1, 1]。对应的两个点的值,肯定就远远大于其他的点之间的距离,这个时候,就是求出距离最大的两个点之间的距离。

2023-12-27 13:49:32 358

原创 人工智能_机器学习078_聚类算法_概念介绍_聚类升维_降维_各类聚类算法_有监督机器学习_无监督机器学习---人工智能工作笔记0118

第二行,如果我们使用MiniBatch KMeans算法进行数据的划分,可以看到,没有很好的分开,因为下面一部分数据,被划分到上面去了,蓝色的对吧,上面一部分数据。但是对于无监督机器学习来说,就是只有X的数据,没有y数据,也就是无法提前知道结果,只能根据X的相似程度,来进行聚类,有监督机器学习,就是有参考对吧,有训练集X,也有标签Y,用来衡量我们训练的对不对,让我们的模型更准确。可以看到,我们使用KMeans聚类算法,聚类出结果以后,然后改变原来数据的维度,可以看到上面。

2023-12-26 20:02:39 561

原创 人工智能_机器学习077_Kmeans聚类算法_亚洲国家队自动划分类别_3维可视化实现---人工智能工作笔记0117

ax=plt.subplot(111,projection='3d') 然后指定111,表示画布的,第一行,第一列,第一个单元格 plt 是把画布按照网格的形式划分的 然后指定projection是3d,用3d显示。colors= ListedColormap(['red','green'.'purple']) 指定显示颜色。X['2007亚洲杯'],c=y_,s=100,cmap='ocean'X['2007亚洲杯'],c=y_,s=100,cmap=colors。

2023-12-26 17:19:36 389 1

原创 人工智能_机器学习076_Kmeans聚类算法_体验_亚洲国家队自动划分类别---人工智能工作笔记0116

1. `print('类别是: %d' % (i),countries[cond].values)`:这是一个`print`函数,用于输出信息到控制台。1. `print('类别是: %d' % (i),countries[cond])`:这是一个`print`函数,用于输出信息到控制台。可以看到预测以后,显示出了,0,1,2 对吧分别代表 3个类别,那么这3个类别,0,1,2 哪个是水平最高的,是一流的呢?print('类别是: %d' % (i),countries[cond].values)

2023-12-26 16:17:38 333 1

原创 人工智能_机器学习075_SVM支持向量机_算法整体回顾_总结_支持向量机_拉格朗日乘子法_KKT条件_对偶问题转换_SMO算法求解---人工智能工作笔记0115

y.(WT.xi+b)>=1是线性的对吧,实际上不一定,因为 我们可以通过改变 核函数kernel对吧,可以指定 rbf,等,可以让他变成一个曲线.然后我们再来看,可以看到max min就是从小的当中找最大的,min max就是从大的中找最小的,从右边开始找对吧。然后再来构建最小化SVM目标函数, 我们同样也是用,拉格朗日乘数法,然后KKT条件,然后对偶问题转换,然后得到公式。根据之前我们的变化,可以看之前的博文,得到d的距离,因为我们。这里我们希望d这个距离越大越好,越大就是分的越开对吧,

2023-12-26 11:27:28 129

原创 人工智能_机器学习074_SVM支持向量机_软间隔与优化目标函数构建_C参数由来_惩罚误差点的惩罚度---人工智能工作笔记0114

所以有了这个C以后,我们就可以借助这个C,比对调整C,减小C,来减小对错误数据的惩罚,那么kesei就会变大,那么 对错误数据的容忍程度就会上升。可以看到,我们知道l3,l1,l2 l2是超平面,然后l1是下方的点也就是=1的时候。比如可以看到,上面圆圈中的点,就是属于不好分割的,而我们,需要让我们的模型允许这种情况的出现,可以兼容这种情况。然后我们利用SMO算法对,最终得到的L 这个软间隔,硬间隔的,损失函数进行求解,就可以得到w和b的解对吧.

2023-12-25 21:05:19 211

nifi-p12-store.zip 这个文件就是nifi-1.23.2今年最新8月份出的最新版需要的加密文件

nifi_p12_store.zip 这个文件就是nifi-1.23.2今年最新8月份出的最新版需要的加密文件,我们下载最新的nifi-1.23.2这个版本的安装文件以后,解压以后,启动是启动不了的,原因是缺少,这个keystore.p12文件和truststore.p12文件,这两个文件放到conf下面以后,然后去配置nifi.properties文件,配置以后,指定了这两个p12文件的位置,然后去启动nifi就可以启动了,其实,比这个版本低的nifi也是这样的,弄好久才找到了这个问题所在啊...分享 2023-10-08 21:18:18这个时间亲测 可以的..下载去用吧

2023-10-08

瀚高DB企业版最新版连接操作工具2023.zip

瀚高DB企业版最新版连接操作工具2023 这个是在安装完了以后可以用这个工具像用Navicat操作mysql数据库一样来操作瀚高DB数据库. 这个可以结合对应的博文: Centos7.9安装瀚高数据库企业版6.0.4_并开启远程连接_使用瀚高连接工具操作_亲测成功---国产瀚高数据库工作笔记003 可以结合这个博文来看,这里面写了如何安装,以及如何用这个操作连接工具远程连接使用瀚高DB数据库.

2023-07-21

瀚高DB企业版最新6.0.4官方安装教程.zip

瀚高PG的安装本来以为很简单,装上就可以了,但是安装了两天,工作经验10年,安装了两天,很麻烦的还是...要注意,首先下载的时候要和对应的系统匹配下载,比如你是Centos,就要下载Centos版本的,我是安装在了openeuler华为的欧拉系统上了,出现了一堆的问题,就很麻烦, 解决了很久,...最后还是没有安装上.. 最后还是换成了centos7来安装的,安装后又找连接工具,这个时候发现连接工具在官网上也没有找到下载的地方,折腾了很久是找到了,可是连不上,又配置远程连接,最后总于弄好了. Centos7.9安装瀚高数据库企业版6.0.4_并开启远程连接_使用瀚高连接工具操作_亲测成功---国产瀚高数据库工作笔记003 https://credream.blog.csdn.net/article/details/131836438?spm=1001.2014.3001.5502 对应了我的这个博客可以参考,希望能帮助到你们把.

2023-07-21

NIFI-MySqlToMySql增量同步数据实时采集-实现了日期类型-以及空值处理-插入已存在变更新-更新未存在变插入.zip

NIFI_MySqlToMySql增量同步数据实时采集_实现了日期类型_以及空值处理_插入已存在变更新_更新未存在变插入.zip 使用了NIFI1.21.0最新版,2023-06-20作者在这个时间做好的,这个大数据处理流程,已经实现了,增量mysql的cdc数据读取以后,在插入到目标mysql数据库的时候,如果碰到主键一样的id,就自动变成更新数据,如果在更新的时候碰到主键没有的id就自动变成插入操作,这个是比较符合实际应用情况的.

2023-06-20

NIFI1.21.0-大数据同步处理模板-MysqlToMysql增量同步-单表-处理日期-空值数据.zip

NIFI1.21.0_大数据同步处理模板_MysqlToMysql增量同步_单表_处理日期_空值数据.zip 是作者自己实际项目中用到的,自己学习后制作的NIFI流程模板文件,导入后可以直接使用, 实现了Mysql到mysql数据库的增量CDC数据的实时同步,通过过程中,实现了sql的拼接,以及对日期类型,和空数据类型的处理.

2023-06-20

NIFI1.21.0-Mysql和Postgresql到MysqlHbase-全量指定库和表同步到Mysql和Hbase.zip

NIFI1.21.0_Mysql和Postgresql到MysqlHbase_全量指定库和表同步到Mysql和Hbase.zip 是一个nifi的模板,实现了从mysql以及postgresql中同时读取数据,读取的时候支持,指定数据库和数据表进行同步,数据全量同步,可以同时同步到mysql数据库以及hbase数据库中.

2023-06-20

NIFI大数据处理-PostgresqlToMySql指定表多表-CDC增量数据实时同步.zip

这个项目花费了我比较多的心血,NIFI还是挺好用的,主要是很灵活,可以自己定制,我感觉比一些做CDC的工具,会更灵活一些,但是学习门槛高,现在用的还不是那么的多,很多东西需要自己去查阅官网去自己学习,然后,很多代码需要不停的尝试,才能知道对应的处理器,最终是应该如何使用. 上面的资源我弄了一个星期,终于实现了,把数据从postgresql数据库可以动态的,实时,读取postgresql的cdc数据然后根据cdc的内容,进行数据增量的同步到mysql数据库中去,而且还添加了,cdc数据的分页功能,如果cdc数据内容特别多就不用担心了. 然后还添加了数据表过滤的功能,比如你只想同步一个数据库中的3张表,那么这里面我已经帮你实现了,然后如果你想同步一个数据库中的所有的表,我也已经帮你实现了,你下载以后,直接导入到nifi中,然后配置好自己的数据源就可以直接使用了.

2023-06-12

K线理论-付费课程-实战经验-总结学习手册-2023-05-29.zip

首先是见顶的单根K线的形态: 1、大阳线见顶 也就是开盘在相对低位,收盘在最高价附近,强势状态非常明显,但是如果出现在股价相对的高位或者是上涨行情的尾声阶段的大阳线,往往就是见顶信号,如图: 大阳线见顶技术分析有一定的难度,单纯的按照大阳线本身来判断行情,很难判断准确,往往要结合后市的走势来判断,也就说一只股票当天出现大阳线后,是没有办法判断的,要后面几天的走势才能基本判断,一般大阳线过后连续两根阴线就要开始小心了。 付费炒股课程,学习总结 2、大阴线见顶 开盘价就是最高价,收盘在最低位附近,当大阴线出现在股价运用的相对高位区域,意味着空头处于主导。要堤防股价已经见顶,仅作为短线见顶的信号,也就是讲股票运行到了相对高位区域,出现了大阴线,一般称为乌云盖顶,切记是真阴线,不是假阴线,也就是说收盘价是低于昨日收盘价的 3、十字星见顶 十字星就是开盘价和收盘价都在同一个位置附近,在当天盘中有上攻和下跌的动作,但是都有没有突破,局面平衡,显示即将有方向性的突破,同样也需要结合后面几天的走势来判断是否是顶部,

2023-05-29

NIFI大数据模板-MySqlToPostGresql数据分页实时采集-带分页.zip

NIFI大数据模板_MySqlToPostGresql数据分页实时采集-带分页.zip 使用NIFI将数据实时同步到PostGresql中. 下载以后配置自己的mysql数据库连接池,包括连接地址,用户名密码 配置postgresql的数据库连接池,包括连接地址,以及用户名密码 然后启动流程进行数据实时同步

2023-05-25

NIFI大数据模板-HbaseToMysqlByPhoenix-实时数据同步带分页.zip

NIFI大数据模板_HbaseToMysqlByPhoenix-实时数据同步带分页.zip 这里面编写了一个NIFI大数据传输流程,使用phoenix从hbase中去获取数据,带分页获取数据以后,然后把数据同步到指定的mysql数据库中去,实现数据的实时同步. 下载以后配置一下对应的数据库连接池,以及数据库的用户名密码,就可以使用,导入就可以用,非常方便

2023-05-25

NIFI模板PostGreSqlToHbaseByPhoenix-数据从PostGresql实时同步到Hbase-带分页.zip

NIFI模板PostGreSqlToHbaseByPhoenix-数据从PostGresql实时同步到Hbase-带分页.zip NIFI大数据处理模板,导入以后可以直接将数据从postgresql从通过phoenix拉取到Hbase中去,注意这里,需要自己配置一下phoenix连接hbase的参数,包括集群的地址,指定用户名,密码,指定phoenix驱动的位置. 还要注意最好安装nifi1.21.0版本,这个版本笔者是测试过的可以用的

2023-05-25

NIFI大数据模板-PostgresqlToHbase数据实时采集-带分页.zip

如果你也需要利用NIFI进行数据同步,并且你用到了Postgresql数据库,想从Postgresql数据库中去获取数据然后,把数据同步到Hbase中去,这里我们使用的大数据存储工具,Hbase来存储原始数据. 我们需要把所有的关系型数据,以及文档数据等,存入到Hbase中,做为原始数据使用,所以这里 就利用NIFI做了一下. 这个模板导入到NIFI中去以后就可以直接使用,记得配置一下自己的Hbase集群的连接地址,以及Postgresql的连接地址.配置以后,直接启动,就可以进行数据同步了. 记得配置上对应的需要同步的表名以及字段.

2023-05-22

大数据Nifi处理-MySqlToSqlServer数据分页实时同步.zip

项目中需要的整理出来给需要的宝子们,实现了在大数据场景中,实时同步指定MySql数据源的数据,实时同步到SqlServer数据库中去. 下载以后使用的时候,需要配置一下自己的mysql数据源的用户名,密码,ip地址端口号信息,设置以后,在数据库连接池中,启动自己的数据库连接池. 然后再去配置一下sqlserver的数据库连接池,指定对应的IP地址,数据库名称,用户名,密码,然后去启动SqlServer数据库连接池. 最后启动所有流程,Nifi就会根据流程自动从mysql数据库中读取数据,读取数据有把数据同步到SqlServer中去

2023-05-19

MySqlToHbase数据分页导入到Hbase.zip

项目中自己用的,弄了很久,需要把数据从各种数据源导入到,我们的原始数据库,原始数据库采用hbase,来存储所有数据,那么这里就用的nifi,从其他数据源获取数据以后,然后导入到Hbase中去,这个是设计好的流程模板. 导入nifi中以后,直接启动,配置好自己的连接地址,就可以进行数据同步了.

2023-05-16

大数据处理NIFI模板-MySqlToMySql增量数据实时同步-利用Binlog实时同步数据.zip

花了作者好多时间,这个NIFI不得不说还是挺好用的,可以减少很多代码的编写,但是,由于资料太少了,应用案例也少,很多功能,网上都找不到,所以只能自己去研究,研究了很久... 终于攻克了,使用mysql的binlog功能,来实现,insert,update,delete数据的实时同步,增量同步,有了这个流程工具以后,同步数据就变得非常方便了. MySql的Binlog打开以后,然后直接把下载的模板导入到自己的nifi中去,然后配置好自己要同步的数据库和表,配置好数据库连接信息,就可以了启动实时同步了,太酷了...

2023-05-06

Nifi模板-PostGreSqlToMySql数据分页实时采集-带分页.zip

使用大数据处理工具NIFI,进行数据从Postgresql中导入到MySql中,实现数据的同步处理,处理的时候,是带有分页的,因为作者正在做相关的项目,而,用nifi同步数据好说,如何,进行数据的分页同步不好弄,这里,主要是,采用处理器,自动生成分页sql,来进行数据的分页. 弄了好久终于弄出来了,希望能帮到你,这个模板可以导入到nifi中直接使用.非常的方便.

2023-05-06

2023自己实操-验证过的-通达信公式-胜率很高-神技-趋势+底部钝化+底部结构+选股+风口-一整套-.zip

作者自用的一款胜率很高,自己根据经验积累调整,实现的几个指标,交了几年学费总结的. 导入到通达信中就可以用,手机电脑端都可以用,注意包含源码的哈,自己通过这一整套指标,已经有不错的营收,作者自身是程序员,公式是自己根据经验,调整,并且实战操作,胜率很高,分享出来着实有点舍不得,炒股者...往往都是赔钱...我也一样,前好几年都是赔了不少,教了很多学费...经过长时间摸索,才有了这个东西...珍惜吧... 包含了从选股指标 到 风口 到 趋势 到钝化 到结构 5大指标 同时共振使用,效果很好,胜率很高自己一直在用...多了不说了.

2023-04-28

整理了好久-2023最新Java面试题-如果你在找工作-希望能帮到你了

以前的面试题都太旧了,这两年技术发展太快了,找的面试题都是很多旧的,因此整理了一圈,整理出很多新的问题,包括,Redis,Java,Java系列的大数据等内容,很全面,今年工作并不好找,祝你早日找到心仪的好工作.加油~

2023-04-28

2023-04-28最新-自己封装整理-可直接使用-亲测可用-多模态AI合集-ChatGPT4-ChatGpt3.5.zip

2023-04-28最新_自己封装整理_可直接使用_亲测可用_多模态AI合集_ChatGPT4_ChatGpt3.5.zip 人工智能辅助可以帮助我们的工作,生活,提高更多的效率,上面是作者自己整理的,常用的,可用的,无需登录注册就可以使用,来提高我们的工作效率,包括写文档,各种文档,比如论文,产品方案,详细设计,概要设计,需求文档,以及写代码,遇到问题让他给出解决思路,个人用的非常爽...也许真的未来,我们和AI共存..

2023-04-28

大数据Nifi模板-Mysql数据分页同步-实现了分页功能-MySqlToMySql数据分页实时采集-带分页功能.zip

1.最近在用大数据处理工具nifi做大数据处理,纯界面化的操作很方便,但是资料少,就这个mysql分页弄了好久,分享出去了 2.如果你用到了点个赞吧,笔者自己弄了好几天,测试过了可以放心用 3.配置好自己需要同步的表,修改一下数据连接池记得修改成自己的. 4.下载以后配置一下直接启动就可以用了

2023-04-24

大数据nifi模板,用来实时从mysql数据中读取数据到另一个mysql的数据库中

1.最近在做大数据项目,使用了nifi,确实好用,但是不得不说,资料少,而且虽然可以进行自定义处理器开发,但是资料也少. 2.下载以后导入nifi,然后直接点击启动就可以实现数据的同步了,可以直接同步一整张表,数据库连接池已经配置好了,笔者自己测试过用了.. 3.可以配置需要同步的表,然后需要同步的目的地的表就可以了.

2023-04-24

文心一言解读-及应用方向解读2023-04-19PDF.zip

⽂⼼⼤模型强调产业级知识增强的特性,旨在降低B端应⽤场景的AI门槛,便于⼆次开发。和⾦融、电⼒、航天等⾏业的⽣态伙伴发布⼀系列⾏业⼤模型,帮助企业迅 速迭代出和业务模式相匹配的模型,截⾄22年底发布了11个⾏业⼤模型。 n2022年,百度世界⼤会和中国探⽉⼯程联合发布百度航天⽂⼼⼤模型,是⾸个航天领域⼤模型,把航天领域的知识图谱和客户积累的数据进⾏智能采集、分析和理 解,助⼒智能感知、深空探测的技术突破。 l⼤模型之上提供⼯具和平台层,以SDK、API接⼝调⽤的⽅式为AI开发者提供⼤模型的套件,⾯向零基础开发者的EasyDL可以做简单的AI开发,把AI中台封装在成型的 BML⼤模型向外做相应的输出。 ⽂⼼⼀⾔在百度2⽉到3⽉的优先级最⾼,⽐如百度阳泉超算中⼼主要为⽂⼼⼀⾔做训练推理。除了A100,还⽤了⼀些国产化的产品,⽐如寒武纪的思元590

2023-04-19

ChatGpt2023年研究框架-2023-04-19.zip

ChatGpt最新专题研究报告 ChatGPT市场反应热烈,国内外巨头纷纷入场 据统计,ChatGPT日活跃用户数的增速远超Instagram,国内外科技巨头都非常重视ChatGPT引发的科技浪潮,积极布局生成式AI,国内厂商(百度、腾讯等)也高度关注ChatGPT,积极探索前沿技术,相关深度应用也即将推出。 ChatGPT经历多类技术路线演化,逐步成熟与完善 ChatGPT所能实现的人类意图,来自于机器学习、神经网络以及Transformer模型的多种技术模型积累。Transformer建模方法成熟以后,使用一套统一的工具来开发各种模态的基础模型这种理念得以成熟,随后GPT-1、GPT-2、GPT-3模型持续演化升级,最终孵化出ChatGPT文本对话应用。 AIGC跨模态产业生态逐步成熟,商用落地未来可期 AIGC产业生态当前在文本、音频、视频等多模态交互功能上持续演化升级,奠定了多场景的商用基础。跨模态生成技术也有望成为真 正实现认知和决策智能的转折点。

2023-04-19

nacos-server-1.1.4 这个下载以后可以直接使用

nacos-server-1.1.4 这个下载以后可以直接使用,找到对一个的bin目录可以直接启动了,如果有对应的mysql,配置中心可以修改conf文件夹中的application.properties文件,配置,对应的配置中心的内容,具体是mysql的地址,用户名密码

2023-03-16

xsync 脚本将文件同步到大数据集群中的所有机器

xsync 脚本将文件同步到大数据集群中的所有机器,使用起来非常方便,自己封装的 使用的时候,记得修改,脚本中的,集群机器名称.

2023-02-23

利用MybatisPlus来实现对表的水平分表,全自动,可以首先判断表是否存在,不存在创建表

利用MybatisPlus来实现对表的水平分表,全自动,可以首先判断表是否存在,不存在创建表,然后设计有定时任务,可以每个月月末的时候,去创建下一个分表程序

2022-08-22

idl编译jar包模板工程.zip

北向接口开发之idl打包成jar包用到工程的模板,直接把里面的java文件替换成自己的java文件, 首先把厂商提供的idl包编译成java文件,然后把编译后的java文件导入到工程里面去,然后保证项目没有错误,然后点击编译,编译成的jar包可以用来,开发北向接口,采集网管数据.

2022-08-04

在非spring注解类中使用spring容器中的bean_普通类中使用yml配置文件中的配置信息

在非spring注解类中使用spring容器中的bean_普通类中使用yml配置文件中的配置信息,在大数据采集项目中用到的,已经测试过了

2022-07-25

Quartz如何实现判断某个任务是否正在运行,在项目中用到的,已经测试过了

Quartz如何实现判断某个任务是否正在运行,在项目中用到的,已经测试过了,很好用,分享给大家

2022-06-28

SpringBoot中_JAVA利用国密算法_实现内容的加密_解密

SpringBoot中_JAVA利用国密算法_实现内容的加密_解密.zip

2022-06-24

使用quartz定时器实现系统多活,可以实现很多功能,比如集群中的系统多活检测,多设备接入的时候为每个设备创建定时获取数据机制

使用quartz定时器实现系统多活,可以实现很多功能,比如集群中的系统多活检测,多设备接入的时候为每个设备创建定时获取数据机制,利用Quartz设计采集系统并实现系统双活机制_在SpringCloud中自己设计系统双活

2022-06-22

Disruptor报错FatalExceptionHandler的解决办法,看网上这种解决办法挺少,整理了一下

Disruptor报错FatalExceptionHandler的解决办法,看网上这种解决办法挺少,整理了一下,分析了一下Dsiruptor的源码,并给出了解决方案

2022-06-20

用vb.net实现的可以实现股票指数实时监控,并且统计某个时间段的涨跌幅度

用vb.net实现的可以实现股票指数实时监控,并且统计某个时间段的涨跌幅度

2022-06-13

FastJson调整实体类中属性输出的顺序,字段为空的时候仍然输出

FastJson调整实体类中属性输出的顺序,字段为空的时候仍然输出,有时候如果不输出空的字段,导致字段缺失在做判断的时候,获取某个字段就会报错,而对于输出顺序的重要性,就是 如果没有顺序,那么数据,在输出到别的接口的时候,就有报错的风险.

2022-06-13

SpringBoot中利用Redis实现消息队列,代码亲测可用, 可以传输字符串,或java对象都可以

SpringBoot中利用Redis实现消息队列,代码亲测可用, 可以传输字符串,或java对象都可以

2022-06-13

SpringBoot项目中利用Redis实现系统双活_双机热备

SpringBoot项目中利用Redis实现系统双活_双机热备,在定时器环境实现双机热备

2022-06-13

2022系统架构师_备考资料.zip

想来想去还是打算考试,系统架构师,自己是专科生,不提升一下,怕自己竞争力就下降太多了..

2022-01-04

Emeditor_很好用的无限制版本_平时自己工作中用的.zip

Emeditor_很好用的无限制版本_平时自己工作中用的

2021-12-30

ipmsg451_installer64.zip

ipmsg_用于内网用户沟通交流_企业里经常用到

2021-12-30

CameraTest1.zip

android自定义摄像头页面实现图像采集,是自己做智能门店系统时用到的自定义摄像头图像,可以拿过来改一下使用

2021-12-30

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除