人工智能_机器学习065_SVM支持向量机KKT条件_深度理解KKT条件下的损失函数求解过程_公式详细推导---人工智能工作笔记0105

本文深入探讨了KKT条件在支持向量机中的应用,如何将不等式约束转化为等式条件,以便使用拉格朗日乘数法求解。通过详细推导,解释了为何可以去掉阿尔法平方项,并指出找到合适的拉格朗日乘子lamda能使损失函数最小化,从而确定最优解x。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前我们已经说了KKT条件,其实就是用来解决

如何实现对,不等式条件下的,目标函数的求解问题,之前我们说的拉格朗日乘数法,是用来对

等式条件下的目标函数进行求解.

KKT条件是这样做的,添加了一个阿尔法平方对吧,这个阿尔法平方肯定是大于0的,那么

可以结合下面的文章去看,也就是说,如果我们要求:

函数在比如h(x)<=0的条件下的解,那么我们就可以添加一个阿尔法的平方,让这个阿尔法平方 = h(x) 就可以了对吧,也就是说h(x)<=0 那么-h(x)=阿尔法的平方对吧.

这样就把不等式条件转换成了,等式条件,然后就可以使用拉格朗日乘数法进行求解了.

可以看到,这里:

minL(x,lamda,阿尔法) = f(x) +lamada(h(x)+阿尔法平方) 这里lamada>=0

这里的L我们要知道是损失函数对吧,我们就要求损失函数最小值.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添柴程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值