人工智能_机器学习089_DBSCAN聚类案例_DBSCAN聚类算法效果展示_使用轮廓系数来评分DBSCAN效果---人工智能工作笔记0129

本文通过实例展示了如何使用DBSCAN聚类算法,并探讨了参数`eps`和`min_samples`对聚类结果的影响。通过调整这些参数,可以观察到不同聚类数量和异常值的处理。同时,文章介绍了利用轮廓系数评估DBSCAN聚类效果的方法,得出的评分有助于理解模型的性能。
摘要由CSDN通过智能技术生成

dbscan = DBSCAN(eps = 0.2,min_samples =3) 我们指定半径是0.2 然后每个圆圈至少是3个数据就可以归为一类

dbscan.fit(X) 然后进行训练

# 得到每个样本的标签,分类结果

y_ =dbscan.labels_ 然后得到结果 ,注意这里不需要进行predict,因为fit直接就相当于分类了

plt.scatter(X[:,0],X[:,1],c=y_)

然后我们把结果画出来看看

可以看到画出来的效果

然后我们再来调整一下大小

plt.figure(figsize=(5,5))

可以看到显示的正方形了

可以看到有4类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添柴程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值