题目描述:
给定一个二叉树,返回其按层次遍历的节点值。 (即逐层地,从左到右访问所有节点)。
例如:
给定二叉树: [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[9,20],
[15,7]
]
分析:
一:宽度优先搜索。使用cur_level指代当前层,next_level指代下一层。将当前层的val保存到res中,并将下一层的节点保存在next_level中,当当前层遍历完后,就将下一层转为当前层,如此循环遍历。
二:使用递归的方法作深度优先搜索。主要思路为:首先将当前层的值进行保存,若子树不为空,则继续搜索。
代码:
代码一:按层遍历,宽度优先搜索
执行用时: 92 ms, 在Binary Tree Level Order Traversal的Python3提交中击败了3.75% 的用户
内存消耗: 6.8 MB, 在Binary Tree Level Order Traversal的Python3提交中击败了98.55% 的用户
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrder(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
if not root:
return []
cur_level = [root]
res = []
while cur_level:
next_level = []
res_level = []
for node in cur_level:
res_level.append(node.val)
if node.left:
next_level.append(node.left)
if node.right:
next_level.append(node.right)
cur_level = next_level
res.append(res_level)
return res
代码二:使用递归遍历,深度优先搜索
执行用时: 48 ms, 在Binary Tree Level Order Traversal的Python3提交中击败了99.91% 的用户
内存消耗: 7.7 MB, 在Binary Tree Level Order Traversal的Python3提交中击败了14.97% 的用户
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrder(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
if not root:
return []
res = []
def dfs(node, level, res):
if len(res) < (level+1):
res.append([])
res[level].append(node.val)
if node.left:
dfs(node.left, level+1, res)
if node.right:
dfs(node.right, level+1, res)
dfs(root, 0, res)
return res
复杂度:
n为列表的长度
时间复杂度
O
(
n
)
O(n)
O(n),空间复杂度
O
(
n
)
O(n)
O(n)