6、Okta设备管理与单点登录:提升用户体验与安全保障

Okta设备管理与单点登录:提升用户体验与安全保障

1. 设备管理概述

在企业环境中,了解哪些设备可以访问Okta至关重要。通过Universal Directory(UD)中的设备部分,组织能够清晰掌握设备访问情况。这不仅为终端用户添加了上下文信息,还可用于基于上下文的访问策略。此外,Fastpass的使用为Okta连接设备提供了无密码登录体验,但需注意,这并非替代移动设备管理(MDM)系统,而是将特定设备与Okta连接,并将设备与用户关联,从而增强组织的安全性。

1.1 设备注册

管理员无法在Okta管理门户中直接注册设备。设备是在用户使用设备通过Okta Verify进行注册时完成登记的。具体操作步骤如下:
1. 用户使用设备打开Okta Verify应用程序。
2. 按照应用程序的提示完成注册流程。
注册完成后,若导航至“Directory > Devices”,即可看到已在Okta组织中注册的所有设备列表。一个用户可以关联多个设备,反之亦然。在Okta的用户配置文件中,也能找到关联的设备。

1.2 设备状态与管理

在设备列表中,可以看到设备的管理状态,分为“Managed”(已管理)和“Not managed”(未管理)。此状态表明是否有独立的MDM系统与Okta集成,以及设备是否由该MDM管理。当集成完成后,会向设备部署管理提示(针对移动设备)或管理认证证书(针对桌面设备),并在访问Okta和/或应用程序时进行检查。

设备概述部分还会显示设备所使用的平台类型。作为管理员,还可以暂停或停用设备,这在设备可能受到威胁或用户更换设备时非常有用。

以下是

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值