邻接表--创建图、删除图、深度优先搜索、广度优先搜索---代码

以下给出了以邻接表表示图时的:图建立、图删除、深度优先遍历、广度优先遍历的代码。

#include<iostream>
#include<queue>
using namespace std;
    
struct edge   //structure of edge
{
    int vertex1_index;
    int vertex2_index;
};  
    
struct edge_node  //structure of node on the edge list
{   
    int index;
    edge_node* sibling;
};      
        
struct vertex_node  //structure of vertex
{   
    char c_value;
    edge_node* first_child;
};      
        
        
struct graph_adj_list_presentation  //structrue of graph
{       
    int number_of_nodes;
    int number_of_edges;
    vertex_node* vertex_array;
};  
    
graph_adj_list_presentation creat_graph(char c_values[],int number_of_vertexs,edge* edges,int number_of_edges)  //function to create a graph
{
    graph_adj_list_presentation graph;
    graph.number_of_nodes=number_of_vertexs;
    graph.number_of_edges=number_of_edges;
    graph.vertex_array=(vertex_node*)malloc(number_of_vertexs*sizeof(vertex_node));
    for(int i=0;i<number_of_vertexs;i++)
    {
        graph.vertex_array[i].c_value=c_values[i];
        graph.vertex_array[i].first_child=NULL;
    }
    for(int i=0;i<number_of_edges;i++)
    {
        edge_node* temp_node_pointer=(edge_node*)malloc(sizeof(edge_node));
        temp_node_pointer->index=edges[i].vertex2_index;
        temp_node_pointer->sibling=graph.vertex_array[edges[i].vertex1_index].first_child;
        graph.vertex_array[edges[i].vertex1_index].first_child=temp_node_pointer;

        temp_node_pointer=(edge_node*)malloc(sizeof(edge_node));
        temp_node_pointer->index=edges[i].vertex1_index;
        temp_node_pointer->sibling=graph.vertex_array[edges[i].vertex2_index].first_child;
        graph.vertex_array[edges[i].vertex2_index].first_child=temp_node_pointer;
    }
    return graph;
}

void delete_graph(graph_adj_list_presentation graph_deleted)  //function to release the menmory hold by the graph
{
    int number_of_vertexs=graph_deleted.number_of_nodes;
    for(int i=0;i<number_of_vertexs;i++)
    {
        while(graph_deleted.vertex_array[i].first_child!=NULL)
        {
            edge_node* temp_pointer=graph_deleted.vertex_array[i].first_child;
            graph_deleted.vertex_array[i].first_child=temp_pointer->sibling;
            free(temp_pointer);
        }
    }
    free(graph_deleted.vertex_array);
}

void dfsm(graph_adj_list_presentation graph_tranversed,int current_vertex,bool checked[])  //sub function used by the function dfs
{
    if(checked[current_vertex]==true)
        return;
    cout<<graph_tranversed.vertex_array[current_vertex].c_value<<" ";
    checked[current_vertex]=true;
    edge_node* temp_pointer=graph_tranversed.vertex_array[current_vertex].first_child;
    while(temp_pointer!=NULL)
    {
        dfsm(graph_tranversed,temp_pointer->index,checked);
        temp_pointer=temp_pointer->sibling;
    }
}

void dfs(graph_adj_list_presentation graph_tranversed)  //deep first search the group
{

    bool check[7]={false,false,false,false,false,false,false};
    for(int i=0;i<graph_tranversed.number_of_nodes;i++)
    {
        dfsm(graph_tranversed,i,check);
    }
}

void bfs(graph_adj_list_presentation graph_tranversed)  //breadth first search the group
{
    bool checked[]={false,false,false,false,false,false,false};
    queue<int> queue_for_use;
    for(int i=0;i<graph_tranversed.number_of_nodes;i++)
    {
        if(checked[i]==false)
        {
            queue_for_use.push(i);
            checked[i]=true;
            while(!queue_for_use.empty())
            {
                int top_value=queue_for_use.front();
                queue_for_use.pop();
                cout<<graph_tranversed.vertex_array[top_value].c_value<<" ";
                edge_node* edge_node_temp_pointer=graph_tranversed.vertex_array[top_value].first_child;
                while(edge_node_temp_pointer!=NULL)
                {
                    if(!checked[edge_node_temp_pointer->index])
                    {
                        queue_for_use.push(edge_node_temp_pointer->index);
                        checked[edge_node_temp_pointer->index]=true;
                    }
                    edge_node_temp_pointer=edge_node_temp_pointer->sibling;
                }
            }
        }
    }
}

int main(int* argc,char* argv[])
{
    graph_adj_list_presentation graph;
    char c_node_values[7]={'a','b','c','d','e','f','g'};
    edge edges[6]={{0,1},{0,2},{1,3},{2,3},{3,5},{2,4}};
    graph=creat_graph(c_node_values,7,edges,6);
    cout<<"adjacent list look like follos:"<<endl;
    for(int i=0;i<graph.number_of_nodes;i++)
    {
        vertex_node temp_node=graph.vertex_array[i];
        cout<<temp_node.c_value;
        edge_node* temp_pointer=temp_node.first_child;
        while(temp_pointer!=NULL)
        {
            cout<<"-->"<<graph.vertex_array[temp_pointer->index].c_value;
            temp_pointer=temp_pointer->sibling;
        }
        cout<<endl;
    }
    cout<<"deep first search result:"<<endl;
    dfs(graph);
    cout<<endl<<"breath first search result:"<<endl;
    bfs(graph);
    delete_graph(graph);
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值