朴素板子,没有加弧优化
int n, m, cnt;//点,边,前向星计数
int head[maxn];//前向星
int level[maxn];//分层
struct Edge
{
int to;
ll val;
int next;
}edge[maxn*maxn];
void add(int u,int v,int val)
{
edge[cnt].to=v;
edge[cnt].val=val;
edge[cnt].next=head[u];
head[u]=cnt++;
/*反向存边,在原边基础上+1*/
edge[cnt].to=u;
edge[cnt].val=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
bool find_level(int s,int t)//源点和汇点,该bfs函数用来确定深度(层次)
{
queue<int> q;
memset(level,0,sizeof(level));
int u=s;
level[u]=1;
q.push(u);
while(!q.empty())
{
u=q.front();
q.pop();
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
ll val=edge[i].val;
if(!level[v]&&val)//层次不为0且容量不为0
{
level[v]=level[u]+1;
q.push(v);
}
}
if(level[t])//?
{
return true;
}
}
return false;
}
ll updata(int u,ll u_val,int t)//dfs,更新
{
if(u==t)
{
return u_val;
}
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
ll val=edge[i].val;
if(level[v]==level[u]+1&&val)
{
ll tmp=updata(v,min(u_val,val),t);
if(tmp)
{
edge[i].val-=tmp;
edge[i^1].val+=tmp;//神奇操作
return tmp;
}
}
}
return 0;
}
ll Dinic(int s,int t)
{
ll ans=0;
while(find_level(s,t))
{
ans+=updata(s,inf,t);
}
return ans;
}
void init()
{
cnt=0;
memset(head,-1,sizeof(head));
}
int main()
{
init();
int s,t;
cin>>n>>m>>s>>t;
for(int i =1;i<=m;i++)
{
ll a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
cout<<Dinic(s,t)<<endl;
return 0;
}
弧优化+剪枝
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <queue>
#include <functional>
#include <vector>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
const int maxn=200+50;
const int inf=0x7fffffff;
const int MOD=998244353;
const int HASH=131;
int n, m, cnt;//点,边,前向星计数
int head[maxn];//前向星
int level[maxn];//分层
int cur[maxn];//当前弧优化
struct Edge
{
int to;
ll val;
int next;
}edge[maxn*maxn];
void add(int u,int v,int val)
{
edge[cnt].to=v;
edge[cnt].val=val;
edge[cnt].next=head[u];
head[u]=cnt++;
/*反向存边,在原边基础上+1*/
edge[cnt].to=u;
edge[cnt].val=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
bool find_level(int s,int t)//源点和汇点,该bfs函数用来确定深度(层次)
{
queue<int> q;
memset(level,0,sizeof(level));
for(int i=1;i<=n;i++)
{
cur[i]=head[i];
}
int u=s;
level[u]=1;
q.push(u);
while(!q.empty())
{
u=q.front();
q.pop();
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
ll val=edge[i].val;
if(!level[v]&&val)//层次不为0且容量不为0
{
level[v]=level[u]+1;
q.push(v);
}
}
if(level[t])//如果t有分层则继续下一步的处理
{
return true;
}
}
return false;
}
ll updata(int u,ll u_val,int t)//dfs更新
{
if(u==t)
{
return u_val;
}
ll used=0;//使用多少容量
for(int &i=cur[u];~i;i=edge[i].next)//当前弧优化的神奇操作
{
int v=edge[i].to;
ll val=edge[i].val;
if(level[v]==level[u]+1&&val)//如果是相邻两层且有剩余容量
{
ll tmp=updata(v,min(u_val-used,val),t);//dfs递归,找最小容量
edge[i].val-=tmp;
edge[i^1].val+=tmp;
used+=tmp;
if(used==u_val) return used;//达到最大值,本条增广路作废?
}
}
if(used==0) level[u]=-1;//找不到增广路,减枝,节点作废
return used;
}
ll Dinic(int s,int t)
{
ll ans=0;
while(find_level(s,t))
{
ans+=updata(s,inf,t);
}
return ans;
}
void init()
{
cnt=0;
memset(head,-1,sizeof(head));
}
int main()
{
init();
int s,t;
scanf("%d %d %d %d",&n,&m,&s,&t);
for(int i =1;i<=m;i++)
{
ll a,b,c;
scanf("%lld %lld %lld",&a,&b,&c);
add(a,b,c);
}
printf("%lld",Dinic(s,t));
return 0;
}
例题洛谷P3376
朴素板子会T2个点,优化后可以ac