给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
树中节点的数目在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
1.自己写的:自顶向下,要保存自顶向下的val值,他原先函数的参数表是bool hasPathSum(TreeNode* root, int targetSum)
所以要重新弄个函数把一路上的结点的val传到叶子结点:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int flag=0,t;
void calculate(TreeNode* root,int val1) {
if(root->left==nullptr&&root->right==nullptr) {
if(t==val1+root->val) {
flag=1;
return;
}
}
if(root->left!=nullptr) {
calculate(root->left,val1+root->val);
}
if(root->right!=nullptr) {
calculate(root->right,val1+root->val);
}
}
bool hasPathSum(TreeNode* root, int targetSum) {
if(!root) {
return false;
}
t=targetSum;
calculate(root,0);
if(flag==1)return true;
return false;
}
};
2.直接利用targetsum-rootval走到叶子结点
class Solution {
public:
bool hasPathSum(TreeNode *root, int sum) {
if (root == nullptr) {
return false;
}
if (root->left == nullptr && root->right == nullptr) {
return sum == root->val;
}
return hasPathSum(root->left, sum - root->val) ||
hasPathSum(root->right, sum - root->val);
}
};
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/path-sum